GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: NMR in Biomedicine, Wiley, Vol. 24, No. 3 ( 2011-04), p. 253-262
    Abstract: Duchenne muscular dystrophy (DMD) is a hereditary X‐linked recessive disorder affecting the synthesis of dystrophin, a protein essential for structural stability in muscle. Dystrophin also occurs in the central nervous system, particularly in the neocortex, hippocampus and cerebellum. Quantitative metabolic analysis by localized 1 H MRS was performed in the cerebellum (12 patients and 15 controls) and a temporo‐parietal location (eight patients and 15 controls) in patients with DMD and healthy controls to investigate possible metabolic differences. In addition, the site of individual mutations on the dystrophin gene was analyzed and neuropsychological cognitive functions were examined. Cognitive deficits in the patient group were found in line with earlier investigations, mainly concerning verbal short‐term memory, visuo‐spatial long‐term memory and verbal fluency, but also the full‐scale IQ. Causal mutations were identified in all patients with DMD. Quantitative MRS showed consistent choline deficits, in both cerebellar white matter and temporo‐parietal cortex, as well as small, but significant, metabolic abnormalities for glutamate and total N ‐acetyl compounds in the temporo‐parietal region. Compartment water analysis did not reveal any abnormalities. In healthy subjects, choline levels were age related in the cerebellum. The choline deficit contrasts with earlier findings in DMD, where a surplus of choline was postulated for the cerebellum. In patients, total N ‐acetyl compounds in the temporo‐parietal region were related to verbal IQ and verbal short‐term memory. However, choline, the putative main metabolic abnormality, was not found to be associated with cognitive deficits. Furthermore, in contrast with the cognitive performance, the metabolic brain composition did not depend significantly on whether or not gene mutations concerned the expression of the dystrophin isoform Dp140, leading to the conclusion that the effect of the missing Dp140 isoform on cognitive performance is not mediated through the observed metabolite composition, or is caused by local effects beyond the resolution accessible to MRS investigations. Copyright © 2010 John Wiley & Sons, Ltd.
    Type of Medium: Online Resource
    ISSN: 0952-3480 , 1099-1492
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2011
    detail.hit.zdb_id: 2002003-X
    detail.hit.zdb_id: 1000976-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...