GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    In: JOR SPINE, Wiley, Vol. 6, No. 3 ( 2023-09)
    Kurzfassung: Adolescent idiopathic scoliosis (AIS) is a scoliotic deformity of unknown etiology that occurs during adolescent development. Abnormal bone metabolism is closely related to AIS, but the cause is uncertain. Recent studies have shown that heat shock protein 27 (HSP27) and its phosphorylation (pHSP27) play important roles in bone metabolism. However, whether HSP27 and pHSP27 are involved in abnormal bone metabolism in AIS is unclear. Methods Osteoblasts (OBs) and bone marrow stem cells (BMSCs) were extracted from the facet joints and bone marrow of AIS patients and controls who underwent posterior spinal fusion surgery. The expression levels of HSP27 and pHSP27, as well as the expression levels of bone formation markers in OBs from AIS patients and controls, were examined by quantitative real‐time PCR (qRT–PCR) and Western blotting. The mineralization ability of OBs from AIS patients and controls was analyzed by alizarin red staining after osteogenic differentiation. Heat shock and thiolutin were used to increase the levels of pHSP27 in OBs, and the levels of bone formation markers were also investigated. In addition, the levels of pHSP27 and the bone formation ability of BMSCs from AIS patients and controls were investigated after heat shock treatment. Results Lower pHSP27 levels and impaired osteogenic differentiation abilities were observed in the OBs of AIS patients than in those of controls. Thiolutin increased HSP27 phosphorylation and increased the mRNA levels of SPP1 and ALPL in OBs from AIS patients. Heat shock treatment increased SPP1 and HSP27 mRNA expression, pHSP27 levels, OCN expression, and mineralization ability of both OBs and BMSCs from AIS patients. Conclusion Heat shock treatment and thiolutin can increase the levels of pHSP27 and further promote the bone formation of OBs and BMSCs from AIS patients. Therefore, decreased pHSP27 levels may be associated with abnormal bone metabolism in AIS patients.
    Materialart: Online-Ressource
    ISSN: 2572-1143 , 2572-1143
    URL: Issue
    Sprache: Englisch
    Verlag: Wiley
    Publikationsdatum: 2023
    ZDB Id: 2931784-8
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...