GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Wiley ; 2013
    In:  Journal of Computational Chemistry Vol. 34, No. 11 ( 2013-04-30), p. 952-957
    In: Journal of Computational Chemistry, Wiley, Vol. 34, No. 11 ( 2013-04-30), p. 952-957
    Abstract: In this work, we add different strength of external electric field ( E ext ) along molecule axis (Z‐axis) to investigate the electric field induced effect on HArF structure. The H‐Ar bond is the shortest at E ext = −189 × 10 −4 and the Ar‐F bond show shortest value at E ext = 185 × 10 −4 au. Furthermore, the wiberg bond index analyses show that with the variation of HArF structure, the covalent bond H‐Ar shows downtrend (ranging from0.79 to 0.69) and ionic bond Ar‐F shows uptrend (ranging from 0.04 to 0.17). Interestingly, the natural bond orbital analyses show that the charges of F atom range from −0.961 to −0.771 and the charges of H atoms range from 0.402 to 0.246. Due to weakened charge transfer, the first hyperpolarizability (β tot ) can be modulated from 4078 to 1087 au. On the other hand, make our results more useful to experimentalists, the frequency‐dependent first hyperpolarizabilities were investigated by the coupled perturbed Hartree‐Fork method. We hope that this work may offer a new idea for application of noble‐gas hydrides. © 2013 Wiley Periodicals, Inc.
    Type of Medium: Online Resource
    ISSN: 0192-8651 , 1096-987X
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2013
    detail.hit.zdb_id: 1479181-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...