GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Biotechnology and Bioengineering, Wiley, Vol. 118, No. 5 ( 2021-05), p. 2092-2104
    Abstract: Syngas fermentation is a potential player for future emission reduction. The first demonstration and commercial plants have been successfully established. However, due to its novelty, development of syngas fermentation processes is still in its infancy, and the need to systematically unravel and understand further phenomena, such as substrate toxicity as well as gas transfer and uptake rates, still persists. This study describes a new online monitoring device based on the respiration activity monitoring system for cultivation of syngas fermenting microorganisms with gaseous substrates. The new device is designed to online monitor the carbon dioxide transfer rate (CO 2 TR) and the gross gas transfer rate during cultivation. Online measured data are used for the calculation of the carbon monoxide transfer rate (COTR) and hydrogen transfer rate (H 2 TR). In cultivation on pure CO and CO + H 2 , CO was continuously limiting, whereas hydrogen, when present, was sufficiently available. The maximum COTR measured was approximately 5 mmol/L/h for pure CO cultivation, and approximately 6 mmol/L/h for cultivation with additional H 2 in the gas supply. Additionally, calculation of the ratio of evolved carbon dioxide to consumed monoxide, similar to the respiratory quotient for aerobic fermentation, allows the prediction of whether acetate or ethanol is predominantly produced. Clostridium ljungdahlii , a model acetogen for syngas fermentation, was cultivated using only CO, and CO in combination with H 2 . Online monitoring of the mentioned parameters revealed a metabolic shift in fermentation with sole CO, depending on COTR. The device presented herein allows fast process development, because crucial parameters for scale‐up can be measured online in small‐scale gas fermentation.
    Type of Medium: Online Resource
    ISSN: 0006-3592 , 1097-0290
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 1480809-2
    detail.hit.zdb_id: 280318-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...