GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Bioelectromagnetics, Wiley, Vol. 36, No. 4 ( 2015-04), p. 267-276
    Abstract: This study aimed to explore effects of static magnetic fields (SMFs) of moderate intensity (3–50 mT) as biophysical stimulators of proliferation and osteoblastic differentiation of human bone marrow‐derived mesenchymal stem cells (MSCs). MSCs were exposed to SMFs of three intensities: 3, 15, and 50 mT. Proliferation was assessed by cell counting and bromodeoxyuridine incorporation, and differentiation by measuring alkaline phosphatase (ALP) activity, calcium content, mineralized nodule formation, and transcripts of osteogenic markers. Moderate intensity SMFs increased cell proliferation, ALP activity, calcium release, and mineralized nodule formation in a dose‐ and time‐dependent manner, which peaked at 15 mT. In the same manner, they upregulated expression of osteogenic marker genes such as ALP, bone sialoprotein 2 (BSP2), collagen1a1 (COL1a1), osteocalcin (OCN), osteonectin (ON), osteopontin (OPN), osterix (OSX), and runt‐related transcription factor 2 (RUNX2) with peak at 15 mT after 14 or 21 days of exposure. Results demonstrate that moderate intensity SMFs promote proliferation and osteoblastic differentiation of MSCs. This effect could help to improve MSC responses during osseointegration between a dental implant and surrounding bone. Bioelectromagnetics. 36:267–276, 2015. © 2015 Wiley Periodicals, Inc.
    Type of Medium: Online Resource
    ISSN: 0197-8462 , 1521-186X
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2015
    detail.hit.zdb_id: 2001228-7
    detail.hit.zdb_id: 760683-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...