GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Angewandte Chemie International Edition, Wiley, Vol. 63, No. 33 ( 2024-08-12)
    Abstract: Low *CO coverage on the active sites is a major hurdle in the tandem electrocatalysis, resulting in unsatisfied C 2 H 4 production efficiencies. In this work, we developed a synergetic‐tandem strategy to construct a copper‐based composite catalyst for the electroreduction of CO 2 to C 2 H 4 , which was constructed via the template‐directed polymerization of ultrathin Cu(II) porphyrin organic framework incorporating atomically isolated Cu(II) porphyrin and Cu(II) bipyridine sites on a carbon nanotube (CNT) scaffold, and then Cu 2 O nanoparticles were uniformly dispersed on the CNT scaffold. The presence of dual active sites within the Cu(II) porphyrin organic framework create a synergetic effect, leading to an increase in local *CO availability to enhance the C−C coupling step implemented on the adjacent Cu 2 O nanoparticles for further C 2 H 4 production. Accordingly, the resultant catalyst affords an exceptional CO 2 ‐to‐C 2 H 4 Faradaic efficiency (FE C2H4 ) of 71.0 % at −1.1 V vs reversible hydrogen electrode (RHE), making it one of the most effective copper‐based tandem catalysts reported to date. The superior performance of the catalyst is further confirmed through operando infrared spectroscopy and theoretic calculations.
    Type of Medium: Online Resource
    ISSN: 1433-7851 , 1521-3773
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2024
    detail.hit.zdb_id: 2011836-3
    detail.hit.zdb_id: 123227-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...