GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Advanced Energy Materials, Wiley, Vol. 13, No. 16 ( 2023-04)
    Abstract: Implantable power sources face great challenges in balancing multiple factors including high performance, biocompatibility, mechanical properties for soft tissue fit, and biodegradability. Toward this goal, a simple and feasible method is proposed to prepare implantable a hydrogel‐based supercapacitor (SC). Specially, a multinetwork conductive electrode is in situ formed by aminated‐reduced‐graphene‐oxide‐and‐methacrylic‐anhydride‐comodified sericin (SrMA/A‐rGO) sequentially cross‐linking with four‐arm polyethylene glycol succinimide carbonate and polyethylene glycol acrylate. The conductive multinetwork endows the SrMA/A‐rGO‐based SC implant an equivalent series resistance of 21 Ω cm −2 , a volumetric energy density of 26.0 µW cm −2 , and a high specific capacitance retention (over 76.4%) after long‐term charging/discharging. Two SCs connected in tandem are able to light up a light‐emitting diode for both in vitro and in vivo studies. Moreover, they can work as a direct output power source to electrically stimulate a stopped heart to start beating again. Additionally, the SC exhibits superior biocompatibility and biodegradability in vivo, and holds the value of specific capacitance above 30% 2 weeks after implantation. Thus, this work demonstrates the SrMA/A‐rGO‐based SC's potential to serve as a power storage unit for medical implants (such as a temporary pacemaker).
    Type of Medium: Online Resource
    ISSN: 1614-6832 , 1614-6840
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 2594556-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...