GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Advanced Energy Materials, Wiley, Vol. 13, No. 12 ( 2023-03)
    Abstract: Although the conventional n‐i‐p or p‐i‐n perovskite solar cells (PSCs) can produce ultrahigh efficiency ( 〉 25%), complex synthesis/deposition processes together with strict requirements for preparing the hole‐ and electron‐transport layers (HTLs and ETLs) pose a challenge to accessing low‐cost perovskite devices. To address this issue, a simple strategy of employing a self‐doped perovskite homojunction to replace the HTLs and ETLs has been widely proposed. However, this type of TL‐free homojunction PSCs is usually endowed with poor efficiency. Here, the design principles and working mechanisms of the TL‐free homojunction PSCs are clarified via a rigorous photoelectric simulation. The potential of this type of device is unlocked by optimizing the structural/electrical parameters including thickness, doping concentration, bulk/interface defect concentration, contact barrier, and mobility of n‐perovskite and p‐perovskite. To further uncover the intrinsic physical behavior, ion migration, and photon recycling effects on this type of TL‐free homojunction PSCs are also studied. In addition, devices with different types of structures including TL‐free inverted, ETL‐free, and HTL‐free designs are briefly discussed. Finally, a clear roadmap for the promotion of device efficiency is proposed, providing valuable guidance for designing high‐efficient TL‐free homojunction PSCs.
    Type of Medium: Online Resource
    ISSN: 1614-6832 , 1614-6840
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 2594556-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...