GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Advanced Energy Materials, Wiley, Vol. 8, No. 23 ( 2018-08)
    Abstract: It is reported how differences in the composition of high bandgap Pb bromide‐based perovskites affect their carrier diffusion length and junction type. Pb‐based, APbX 3 , halide perovskite (HaP) films and devices are studied, where A can be a mixture of formamidinium, methylammonium (MA), and Cs, and X a mixture of Br and Cl, using a combination of dark‐ and photoconductivity and steady‐state photocarrier grating. The results show the cation and anion compositions affect both majority and minority carrier diffusion lengths. In particular, using electron beam‐induced current measurements, FTO\dTiO 2 mp‐TiO 2 HaP\PTAA (poly‐triarylamine)\Au devices are studied. The results enable identifying junction and built‐in voltage formation and track position and size of the space charge region width with changes in the HaP composition. As far as it is known, it is found for the first time that a mixed‐cation HaP forms a junction that has characteristics of a p‐i‐n one, with relatively long and comparable carrier diffusion lengths, while the single cation‐based bromide HaPs form clear p‐n junctions at the interface with the TiO 2 [pure CsPbBr 3 and MAPbBr 3 (Cl)] or a buried one (MAPbBr 3 ) and shorter diffusion lengths. These differences are attributed to lower carrier density in MAPbBr 3 , and especially in the mixed cation HaP, which is comparable to iodide‐based HaP films.
    Type of Medium: Online Resource
    ISSN: 1614-6832 , 1614-6840
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 2594556-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...