GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Advanced Energy Materials, Wiley, Vol. 7, No. 13 ( 2017-07)
    Abstract: Aimed at achieving ideal morphology, illuminating morphology–performance relationship, and further improving the power conversion efficiency (PCE) of ternary polymer solar cells (TSCs), a ternary system is designed based on PTB7‐Th:PffBT4T‐2OD:PC 71 BM in this work. The PffBT4T‐2OD owns large absorption cross section, proper energy levels, and good crystallinity, which enhances exciton generation, charge dissociation and transport and suppresses charge recombination, thus remarkably increasing the short‐circuit current density ( J sc ) and fill factor (FF). Finally, a notable PCE of 10.72% is obtained for the TSCs with 15% weight ratio of PffBT4T‐2OD. As for the working mechanism, it confirmed the energy transfer from PffBT4T‐2OD to PTB7‐Th, which contributes to the improved exciton generation. And morphology characterization indicates that the devices with 15% PffBT4T‐2OD possess both appropriate domain size (25 nm) and enhanced domain purity. Under this condition, it affords numerous D/A interface for exciton dissociation and good bicontinuous nanostructure for charge transport simultaneously. As a result, the device with 15% PffBT4T‐2OD exhibits improved exciton generation, enhanced charge dissociation possibility, elevated hole mobility and inhibited charge recombination, leading to elevated J sc (19.02 mA cm −2 ) and FF (72.62%) simultaneously. This work indicates that morphology optimization as well as energy transfer plays a significant role in improving TSC performance.
    Type of Medium: Online Resource
    ISSN: 1614-6832 , 1614-6840
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2017
    detail.hit.zdb_id: 2594556-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...