GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Advanced Materials, Wiley, Vol. 35, No. 16 ( 2023-04)
    Abstract: The endogenous electric field (EF) generated by transepithelial potential difference plays a decisive role in wound reepithelialization. For patients with large or chronic wounds, negative‐pressure wound therapy (NPWT) is the most effective clinical method in inflammation control by continuously removing the necrotic tissues or infected substances, thus creating a proproliferative microenvironment beneficial for wound reepithelialization. However, continuous negative‐pressure drainage causes electrolyte loss and weakens the endogenous EF, which in turn hinders wound reepithelialization. Here, an electrogenerative dressing (EGD) is developed by integrating triboelectric nanogenerators with NPWT. By converting the negative‐pressure‐induced mechanical deformation into electricity, EGD produces a stable and high‐safety EF that can trigger a robust epithelial electrotactic response and drive the macrophages toward a reparative M2 phenotype in vitro. Translational medicine studies confirm that EGD completely reshapes the wound EF weakened by NPWT, and promotes wound closure by facilitating an earlier transition of inflammation/proliferation and guiding epithelial migration and proliferation to accelerate reepithelialization. Long‐term EGD therapy remarkably advances tissue remodeling with mature epithelium, orderly extracellular matrix, and less scar formation. Compared with the golden standard of NPWT, EGD orchestrates all the essential wound stages in a noninvasive manner, presenting an excellent prospect in clinical wound therapy.
    Type of Medium: Online Resource
    ISSN: 0935-9648 , 1521-4095
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 1474949-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...