GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Wiley ; 2017
    In:  Advanced Materials Vol. 29, No. 31 ( 2017-08)
    In: Advanced Materials, Wiley, Vol. 29, No. 31 ( 2017-08)
    Abstract: Antiferroelectric materials that display double ferroelectric hysteresis loops are receiving increasing attention for their superior energy storage density compared to their ferroelectric counterparts. Despite the good properties obtained in antiferroelectric La‐doped Pb(Zr,Ti)O 3 ‐based ceramics, lead‐free alternatives are highly desired due to the environmental concerns, and AgNbO 3 has been highlighted as a ferrielectric/antiferroelectric perovskite for energy storage applications. Enhanced energy storage performance, with recoverable energy density of 4.2 J cm −3 and high thermal stability of the energy storage density (with minimal variation of ≤±5%) over 20–120 °C, can be achieved in Ta‐modified AgNbO 3 ceramics. It is revealed that the incorporation of Ta to the Nb site can enhance the antiferroelectricity because of the reduced polarizability of B‐site cations, which is confirmed by the polarization hysteresis, dielectric tunability, and selected‐area electron diffraction measurements. Additionally, Ta addition in AgNbO 3 leads to decreased grain size and increased bulk density, increasing the dielectric breakdown strength, up to 240 kV cm −1 versus 175 kV cm −1 for the pure counterpart, together with the enhanced antiferroelectricity, accounting for the high energy storage density.
    Type of Medium: Online Resource
    ISSN: 0935-9648 , 1521-4095
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2017
    detail.hit.zdb_id: 1474949-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...