GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Advanced Materials, Wiley, Vol. 29, No. 21 ( 2017-06)
    Abstract: Inspired by the remarkable promotion of power conversion efficiency (PCE), commercial applications of organic photovoltaics (OPVs) can be foreseen in near future. One of the most promising applications is semitransparent (ST) solar cells that can be utilized in value‐added applications such as energy‐harvesting windows. However, the single‐junction STOPVs utilizing fullerene acceptors show relatively low PCEs of 4%–6% due to the limited sunlight absorption because it is a dilemma that more photons need to be harvested in UV–vis–near‐infrared (NIR) region to generate high photocurrent, which leads to the significant reduction of device transparency. This study describes the development of a new small‐bandgap electron‐acceptor material ATT‐2, which shows a strong NIR absorption between 600 and 940 nm with an E g opt of 1.32 eV. By combining with PTB7‐Th, the as‐cast OPVs yield PCEs of up to 9.58% with a fill factor of 0.63, an open‐circuit voltage of 0.73 V, and a very high short‐circuit current of 20.75 mA cm −2 . Owing to the favorable complementary absorption of low‐bangap PTB7‐Th and small‐bandgap ATT‐2 in NIR region, the proof‐of‐concept STOPVs show the highest PCE of 7.7% so far reported for single‐junction STOPVs with a high transparency of 37%.
    Type of Medium: Online Resource
    ISSN: 0935-9648 , 1521-4095
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2017
    detail.hit.zdb_id: 1474949-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...