GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Advanced Functional Materials, Wiley, Vol. 29, No. 17 ( 2019-04)
    Abstract: The negative capacitance (NC) effect is now attracting a great deal of attention in work towards low‐power operation of field effect transistors and extremely large capacitance density in dynamic random access memory. However, to date, observation of the NC effect in dielectric/ferroelectric bilayer capacitors has been limited to the use of epitaxial ferroelectric thin films based on perovskite crystal structures, such as Pb(Zr,Ti)O 3 and BaTiO 3 , which is not compatible with current complementary metal oxide semiconductor technology. This work, therefore, reports on the transient NC effect in amorphous‐Al 2 O 3 /polycrystalline‐Hf 0.3 Zr 0.7 O 2 bilayer systems prepared using atomic layer deposition. The thin film processing conditions are carefully tuned to achieve the appropriate ferroelectric performances that are a prerequisite for the examination of the transient NC effect. Capacitance enhancement is observed in a wide voltage range in 5–10 nm thick Al 2 O 3 /Hf 0.3 Zr 0.7 O 2 bilayer thin films. It is found that the capacitance of the dielectric layer plays a critical role in the determination of additional charge density induced by the NC effect. In addition, inhibition of the leakage current is important for stabilization of nonhysteretic charge–discharge behavior of the bilayers. The mean‐field approximation combined with classical Landau formalism precisely reproduces the experimental results.
    Type of Medium: Online Resource
    ISSN: 1616-301X , 1616-3028
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2029061-5
    detail.hit.zdb_id: 2039420-2
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...