GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Wiley ; 2010
    In:  Advanced Functional Materials Vol. 20, No. 10 ( 2010-05-25), p. 1680-1686
    In: Advanced Functional Materials, Wiley, Vol. 20, No. 10 ( 2010-05-25), p. 1680-1686
    Abstract: Single‐, double‐, and triple‐shelled hollow spheres assembled by Co 3 O 4 nanosheets are successfully synthesized through a novel method. The possible formation mechanism of these novel structures was investigated using powder X‐ray diffraction, scanning and transmission electron microscopies, Fourier transform IR, X‐ray photoelectron spectroscopy, and thermogravimetric analysis. Both poly(vinylpyrrolidone) (PVP) soft templates and the formation of cobalt glycolate play key roles in the formation of these novel multishelled hollow structures. When tested as the anode material in lithium‐ion batteries (LIBs), these multishelled microspheres exhibit excellent cycling performance, good rate capacity, and enhanced lithium storage capacity. This superior cyclic stability and capacity result from the synergetic effect of small diffusion lengths in the nanosheet building blocks and sufficient void space to buffer the volume expansion. This facile strategy may be extended to synthesize other transition metal oxide materials with hollow multishelled micro‐/nanostrucutures, which may find application in sensors and catalysts due to their unique structural features.
    Type of Medium: Online Resource
    ISSN: 1616-301X , 1616-3028
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2010
    detail.hit.zdb_id: 2029061-5
    detail.hit.zdb_id: 2039420-2
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...