GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    In: Molecular Cancer, Springer Science and Business Media LLC, Vol. 18, No. 1 ( 2019-12)
    Kurzfassung: UCA1 is a long non-coding RNA which was found overexpressed in various human cancers including gastric cancer (GC). It is identified that UCA1 promotes GC cells proliferation, migration and invasion, however, the role of UCA1 during the processes of immune escape is still not unclear. Methods We collected 40 paired GC and non-tumor tissue samples. The level of UCA1 in GC and control tissue samples were determined by in situ hybridization and qRT-PCR. Cell viability was determined by MTT assay. GC cells’ migration capacities were examined by transwell assay. To understand the roles of UCA1 during immune escape, wildtype or UCA1 KO GC cells co-cultured with peripheral blood mononuclear cells or cytokine-induced killer cells in vitro. Mouse model was used to examine the function of UCA1 in vivo. Results UCA1 promoted GC cells proliferation and migration, and inhibit apoptosis. UCA1 repressed miR-26a/b, miR-193a and miR-214 expression through direct interaction and then up-regulated the expression of PDL1. UCA1-KO GC cells could induce a higher IFNγ expression when co-cultured with peripheral blood mononuclear cells (PBMCs), and have a lower survival rate when co-cultured with cytokine-induced killer (CIK) cells in vitro. UCA1-KO GC cells formed smaller tumors, had higher miR-26a, −26b, −193a and − 214 level, reduced cell proliferation and increased apoptosis in xenograft mouse model. Conclusions UCA1 overexpression protected PDL1 expression from the repression of miRNAs and contributed to the GC cells immune escape. UCA1 could serve as a potential novel therapeutic target for GC treatment.
    Materialart: Online-Ressource
    ISSN: 1476-4598
    Sprache: Englisch
    Verlag: Springer Science and Business Media LLC
    Publikationsdatum: 2019
    ZDB Id: 2091373-4
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...