GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (4,040)
Document type
  • Articles  (4,040)
Source
Publisher
Years
Journal
  • 11
    Publication Date: 2018-04-15
    Description: Publication date: 1 August 2018 Source: Water Research, Volume 139 Author(s): Xueci Xing, Haibo Wang, Chun Hu, Lizhong Liu The effects of ozone-biologically activated carbon (O 3 -BAC) treatment with various phosphate doses (0, 0.3 or 0.6 mg/L) were investigated on the formation of disinfection by-products (DBPs) and occurrence of opportunistic pathogens (OPs) in drinking water distribution systems (DWDSs) simulated by annular reactors (ARs). It was found that the lowest DBPs and the highest inactivation of OPs such as Mycobacterium spp. , Mycobacterium avium , Aeromonas spp. , Pseudomonas aeruginosa and Hartmanella vermiformis , occurred in the effluent of the AR with 0.6 mg/L phosphate addition. Based on the results of different characterization techniques, for the AR with 0.6 mg/L phosphate-enhanced O 3 -BAC treatment, dissolved organic carbon in the influent exhibited the lowest concentration and most stable fraction due to the improved biodegradation effect. Moreover, the total amount of suspended extracellular polymeric substances (EPS) in the bulk water of the AR decreased greatly, resulting in the lowest chlorine consumption and DBPs formation in the AR. In Fourier transform infrared spectra of the suspended EPS, the amide II band (1600-1500 cm −1 ) disappeared and the protein/polysaccharide ratio decreased remarkably, indicating the destruction of protein and a decrease in hydrophobicity. Moreover, β-sheets and α-helices in the protein secondary structures were degraded while the random coils increased sharply as phosphate addition increased to 0.6 mg/L, inhibiting microbial aggregation and hence weakening the chlorine-resistance capability. Thus, most of the OPs in suspended biofilms were more easily inactivated by residual chlorine, resulting in the lowest OPs occurrence in the effluent of the AR. Our findings indicated that enhancing the efficiency of the BAC filter by adding phosphate is a promising method for improving water quality in DWDSs. Graphical abstract
    Print ISSN: 0043-1354
    Electronic ISSN: 1879-2448
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-04-15
    Description: Publication date: 1 August 2018 Source: Water Research, Volume 139 Author(s): Pablo Alvarez-Zaldívar, Sylvain Payraudeau, Fatima Meite, Jeremy Masbou, Gwenaël Imfeld Although pesticides undergo degradation tests prior to use, determining their export, degradation and persistence under field conditions remains a challenge for water resource management. Compound specific isotope analysis (CSIA) can provide evidence of contaminant degradation extent, as it is generally independent of non-destructive dissipation (e.g., dilution, sorption, volatilization) regulating environmental concentrations. While this approach has been successfully implemented in subsurface environments, its application to pesticides in near-surface hydrological contexts at catchment scale is lacking. This study demonstrates the applicability of CSIA to track pesticide degradation and export at catchment scale and identify pesticide source areas contributing to changes in stable isotope signature in stream discharge under dynamic hydrological contexts. Based on maximum shifts in carbon stable isotope signatures ( Δ δ 13 C  = 4.6 ± 0.5‰) of S-metolachlor (S-met), a widely used herbicide, we estimate maximum degradation to have reached 96 ± 3% two months after first application. Maximum shifts in nitrogen isotope signatures were small and inverse ( Δ δ 15 N = − 1.3 ± 0.6 ‰ ) indicating potential secondary isotope effects during degradation. In combination with a mass balance approach including S-met main degradation products, total catchment non-destructive dissipation was estimated to have reached 8 ± 7% of the applied product. Our results show that CSIA can be applied to evaluate natural attenuation of pesticides at catchment scale. By providing a more detailed account of pesticide dissipation and persistence under field conditions we anticipate the contribution of pesticide CSIA to the improvement of regulatory and monitoring strategies. Graphical abstract
    Print ISSN: 0043-1354
    Electronic ISSN: 1879-2448
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-04-15
    Description: Publication date: 1 August 2018 Source: Water Research, Volume 139 Author(s): Fen Wang, Charles S. Wong, Da Chen, Xingwen Lu, Fei Wang, Eddy Y. Zeng Occurrence of microplastics (MPs) in the environment has attracted great attention as it has become a global concern. This review aims to systematically demonstrate the role of marine microplastic as a novel medium for environmental partitioning of chemicals in the ocean, which can cause toxic effects in the ecological environment. This review assimilated and analyzed available data published between 1972 and 2017 on the interaction between MPs and selected chemicals. Firstly, the review analyzes the occurrence of chemicals in MPs and outlines their distribution patterns. Then possible mechanisms of the interaction between MPs and organic chemicals and potential controlling factors were critically studied. Finally, the hazards of MPs and affiliated organic chemicals to marine organisms were shortly summarized. Graphical abstract
    Print ISSN: 0043-1354
    Electronic ISSN: 1879-2448
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-04-15
    Description: Publication date: 1 July 2018 Source: Water Research, Volume 138 Author(s): Arnoud de Wilt, Koen van Gijn, Tom Verhoek, Amber Vergnes, Mirit Hoek, Huub Rijnaarts, Alette Langenhoff Individual treatment processes like biological treatment or ozonation have their limitations for the removal of pharmaceuticals from secondary clarified effluents with high organic matter concentrations (i.e. 17 mg TOC/L). These limitations can be overcome by combining these two processes for a cost-effective pharmaceutical removal. A three-step biological-ozone-biological (BO 3 B) treatment process was therefore designed for the enhanced pharmaceutical removal from wastewater effluent. The first biological step removed 38% of ozone scavenging TOC, thus proportionally reducing the absolute ozone input for the subsequent ozonation. Complementariness between biological and ozone treatment, i.e. targeting different pharmaceuticals, resulted in cost-effective pharmaceutical removal by the overall BO 3 B process. At a low ozone dose of 0.2 g O 3 /g TOC and an HRT of 1.46 h in the biological reactors, the removal of 8 out of 9 pharmaceuticals exceeded 85%, except for metoprolol (60%). Testing various ozone doses and HRTs revealed that pharmaceuticals were ineffectively removed at 0.1 g O3/g TOC and an HRT of 0.3 h. At HRTs of 0.47 and 1.46 h easily and moderately biodegradable pharmaceuticals such as caffeine, gemfibrozil, ibuprofen, naproxen and sulfamethoxazole were over 95% removed by biological treatment. The biorecalcitrant carbamazepine was completely ozonated at a dose of 0.4 g O 3 /g TOC. Ozonation products are likely biodegraded in the last biological reactor as a 17% TOC removal was found. No appreciable acute toxicity towards D. magna , P. subcapitata and V. fischeri was found after exposure to the influents and effluents of the individual BO 3 B reactors. The BO 3 B process is estimated to increase the yearly wastewater treatment tariff per population equivalent in the Netherlands by less than 10%. Overall, the BO 3 B process is a cost-effective treatment process for the removal of pharmaceuticals from secondary clarified effluents. Graphical abstract
    Print ISSN: 0043-1354
    Electronic ISSN: 1879-2448
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018-04-15
    Description: Publication date: 1 July 2018 Source: Water Research, Volume 138 Author(s): Babak Rajaeian, Sébastien Allard, Cynthia Joll, Anna Heitz Silver impregnated activated carbon (SIAC) has been found to be effective in mitigating the formation of brominated-disinfection by products during drinking water treatment. However, there are still uncertainties regarding its silver leaching properties, and strategies for the prevention of silver leaching have remained elusive. This study focused on the evaluation of one type of commercially available SIAC for its ability to remove bromide while minimising silver leaching from the material. Both synthetic and real water matrices were tested. Depending on solution pH, it was found that changing the surface charge properties of SIAC, as measured by the point of zero charge pH, can result in additional bromide removal while minimising the extent of silver leaching. To better understand the mechanism of silver leaching from the SIAC, eight preconditioning environments, i.e. variable pH and ionic strength were tested for a fixed amount of SIAC and two preconditioning environments were selected for a more detailed investigation. Experiments carried out in synthetic water showed that preconditioning at pH 10.4 did not deteriorate the capacity of SIAC to remove bromide, but significantly decreased the release of silver in the form of ionic silver (Ag + ), silver bromide (AgBr) and silver chloride (AgCl) from 40% for the pristine to 3% for the treated SIAC. This was confirmed using a groundwater sample. These results suggest that preconditioned SIAC has the potential to be an effective method for bromide removal with minimised silver leaching in a long-term field application for drinking water production. Graphical abstract
    Print ISSN: 0043-1354
    Electronic ISSN: 1879-2448
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-04-15
    Description: Publication date: 1 July 2018 Source: Water Research, Volume 138 Author(s): Xiangrui Wang, Wenhong Fan, Zhaomin Dong, Dingyuan Liang, Tingting Zhou It is now widely accepted that coating on the nano-surface would critically dictate the uptake and cytotoxicity of engineering nanomaterials. However, the influence of natural organic matter (NOM) on the surface is quite limited to humic substances, while the diversity of NOM is neglected. In the present study, we tried to investigate the change of surface in the coexistence of bovine serum albumin (BSA) and humic acid (HA). The isothermal titration calorimetric measurements show that HA can combine with BSA in both freshwater or seawater, however, the patterns are different. In freshwater, HA lowered the adsorption of BSA on PVP-capped AgNPs through complexation with BSA, which prevented the contact of sulfur in BSA with PVP-AgNPs. Then in seawater, BSA retained its sulfur availability to bind with PVP-AgNPs. Furthermore, the toxicity of PVP-AgNPs incubated in the BSA/HA solution was evaluated by measuring the level of reactive oxygen species generated by Escherichia coli . The results indicated that, in seawater, the adsorbed BSA promoted the toxicity of PVP-AgNPs in the presence of Ca 2+ and Mg 2+ , but the presence of HA limited this effect. Graphical abstract
    Print ISSN: 0043-1354
    Electronic ISSN: 1879-2448
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-04-15
    Description: Publication date: 1 July 2018 Source: Water Research, Volume 138 Author(s): Daniel Hering, Angel Borja, J.Iwan Jones, Didier Pont, Pieter Boets, Agnes Bouchez, Kat Bruce, Stina Drakare, Bernd Hänfling, Maria Kahlert, Florian Leese, Kristian Meissner, Patricia Mergen, Yorick Reyjol, Pedro Segurado, Alfried Vogler, Martyn Kelly Assessment of ecological status for the European Water Framework Directive (WFD) is based on “Biological Quality Elements” (BQEs), namely phytoplankton, benthic flora, benthic invertebrates and fish. Morphological identification of these organisms is a time-consuming and expensive procedure. Here, we assess the options for complementing and, perhaps, replacing morphological identification with procedures using eDNA, metabarcoding or similar approaches. We rate the applicability of DNA-based identification for the individual BQEs and water categories (rivers, lakes, transitional and coastal waters) against eleven criteria, summarised under the headlines representativeness (for example suitability of current sampling methods for DNA-based identification, errors from DNA-based species detection), sensitivity (for example capability to detect sensitive taxa, unassigned reads), precision of DNA-based identification (knowledge about uncertainty), comparability with conventional approaches (for example sensitivity of metrics to differences in DNA-based identification), cost effectiveness and environmental impact. Overall, suitability of DNA-based identification is particularly high for fish, as eDNA is a well-suited sampling approach which can replace expensive and potentially harmful methods such as gill-netting, trawling or electrofishing. Furthermore, there are attempts to replace absolute by relative abundance in metric calculations. For invertebrates and phytobenthos, the main challenges include the modification of indices and completing barcode libraries. For phytoplankton, the barcode libraries are even more problematic, due to the high taxonomic diversity in plankton samples. If current assessment concepts are kept, DNA-based identification is least appropriate for macrophytes (rivers, lakes) and angiosperms/macroalgae (transitional and coastal waters), which are surveyed rather than sampled. We discuss general implications of implementing DNA-based identification into standard ecological assessment, in particular considering any adaptations to the WFD that may be required to facilitate the transition to molecular data. Graphical abstract
    Print ISSN: 0043-1354
    Electronic ISSN: 1879-2448
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    Elsevier
    Publication Date: 2018-04-15
    Description: Publication date: 1 July 2018 Source: Water Research, Volume 138 Author(s): Andrii Butkovskyi, Ann-Hélène Faber, Yue Wang, Katja Grolle, Roberta Hofman-Caris, Harry Bruning, Annemarie P. Van Wezel, Huub H.M. Rijnaarts Ozonation, sorption to granular activated carbon and aerobic degradation were compared as potential treatment methods for removal of dissolved organic carbon (DOC) fractions and selected organic compounds from shale gas flowback water after pre-treatment in dissolved air flotation unit. Flowback water was characterised by high chemical oxygen demand and DOC. Low molecular weight (LMW) acids and neutral compounds were the most abundant organic fractions, corresponding to 47% and 35% of DOC respectively. Ozonation did not change distribution of organic carbon fractions and concentrations of detected individual organic compounds significantly. Sorption to activated carbon targeted removal of individual organic compounds with molecular weight >115 Da, whereas LMW compounds remained largely unaffected. Aerobic degradation was responsible for removal of LMW compounds and partial ammonium removal, whereas formation of intermediates with molecular weight of 200–350 Da was observed. Combination of aerobic degradation for LMW organics removal with adsorption to activated carbon for removal of non-biodegradable organics is proposed to be implemented between pre-treatment (dissolved air floatation) and desalination (thermal or membrane desalination) steps. Graphical abstract
    Print ISSN: 0043-1354
    Electronic ISSN: 1879-2448
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018-04-15
    Description: Publication date: 1 July 2018 Source: Water Research, Volume 138 Author(s): Anu Mikkonen, Kati Yläranta, Marja Tiirola, Lara Ambrosio Leal Dutra, Pauliina Salmi, Martin Romantschuk, Shelley Copley, Jukka Ikäheimo, Aki Sinkkonen The xenobiotic priority pollutant pentachlorophenol has been used as a timber preservative in a polychlorophenol bulk synthesis product containing also tetrachlorophenol and trichlorophenol. Highly soluble chlorophenol salts have leaked into groundwater, causing severe contamination of large aquifers. Natural attenuation of higher-chlorinated phenols (HCPs: pentachlorophenol + tetrachlorophenol) at historically polluted sites has been inefficient, but a 4-year full scale in situ biostimulation of a chlorophenol-contaminated aquifer by circulation and re-infiltration of aerated groundwater was remarkably successful: pentachlorophenol decreased from 400 μg L −1 to 〈1 μg L −1 and tetrachlorophenols from 4000 μg L −1 to 〈10 μg L −1 . The pcpB gene, the gene encoding pentachlorophenol hydroxylase - the first and rate-limiting enzyme in the only fully characterised aerobic HCP degradation pathway - was present in up to 10% of the indigenous bacteria already 4 months after the start of aeration. The novel quantitative PCR assay detected the pcpB gene in situ also in the chlorophenol plume of another historically polluted aquifer with no remediation history. Hotspot groundwater HCPs from this site were degraded efficiently during a 3-week microcosm incubation with one-time aeration but no other additives: from 5400 μg L −1 to 1200 μg L −1 and to 200 μg L −1 in lightly and fully aerated microcosms, respectively, coupled with up to 2400% enrichment of the pcpB gene. Accumulation of lower-chlorinated metabolites was observed in neither in situ remediation nor microcosms, supporting the assumption that HCP removal was due to the aerobic degradation pathway where the first step limits the mineralisation rate. Our results demonstrate that bacteria capable of aerobic mineralisation of xenobiotic pentachlorophenol and tetrachlorophenol can be present at long-term polluted groundwater sites, making bioremediation by simple aeration a viable and economically attractive alternative. Graphical abstract
    Print ISSN: 0043-1354
    Electronic ISSN: 1879-2448
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2018-04-15
    Description: Publication date: 1 July 2018 Source: Water Research, Volume 138 Author(s): Yushi Tian, Weihua He, Dandan Liang, Wulin Yang, Bruce E. Logan, Nanqi Ren A migration electric–field assisted electrocoagulation (MEAEC) system was developed to increase phosphate removal from domestic wastewater, with reduced energy consumption, using a titanium charging (inert) electrode and a sacrificial iron anode. In the MEAEC, an electric field was applied between the inert electrode (titanium) and an air cathode to drive migration of phosphate anions towards the sacrificial anode. Current was then applied between the sacrificial anode (Fe or Al mesh) and the air cathode to drive electrocoagulation of phosphate. A MEAEC with the Fe electrode using primary clarifier effluent achieved 98% phosphate removal, producing water with a total phosphorus of 0.3 mg/L with 〈6 min total treatment time (five cycles; each 10 s inert electrode charging, and 1 min electrocoagulation), at a constant current density of 1 mA/cm 2 . In the absence of the 10 s charging time, electrocoagulation required 15 min for the same removal. With an aluminum anode and the same phosphorus removal, the MEAEC required 7 cycles (7 min total treatment, 1 min 10 s total charging), while conventional electrocoagulation required 20 min. The energy demand of Fe-MEAEC was only 0.039 kWh/m 3 for 98% phosphate removal, which was 35% less than with the Al-MEAEC of 0.06 kWh/m 3 , and 28% less than that previously obtained using an inert graphite electrode. Analysis of the precipitate showed that a less porous precipitate was obtained with the Al anode than with the Fe anode. The phosphorus in precipitate of Fe-MEAEC was identified as PO 4 3− and HPO 4 2− , while the Fe was present as both Fe 2+ and Fe 3+ . Only HPO 4 2− and Al 3+ were identified in the precipitate of the Al-MEAEC. These results indicated that the MEAEC with a titanium inert charging electrode and iron anode could achieve the most efficient phosphate removal with very low energy demands, compared to previous electrochemical approaches. Graphical abstract
    Print ISSN: 0043-1354
    Electronic ISSN: 1879-2448
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...