GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-01-29
    Description: Publication date: Available online 19 January 2018 Source: Journal of Hydrology: Regional Studies Author(s): Alfonso Rivera, Lucila Candela Study region Global scale. Study focus This paper highlights the main outputs and outcomes of the Internationally Shared Aquifer Resources Management Initiative (ISARM, 2000–2015) of UNESCO on the global scale. We discuss the lessons learned, what is still relevant in ISARM, and what we consider irrelevant and why. We follow with discussion on the looming scenarios and the next steps following the awareness on transboundary aquifers (TBAs) as identified by ISARM. New insights for the region This analysis emphasizes the need for more scientific data, widespread education and training, and a more clearly defined role for governments to manage groundwater at the international level. It describes the links, approach and relevance of studies on TBAs to the UN Law of Transboundary Aquifers and on how they might fit regional strategies to assess and manage TBAs. The study discusses an important lesson learned on whether groundwater science can solve transboundary issues alone. It has become clear that science should interact with policy makers and social entities to have meaningful impacts on TBAs. Bringing together science, society, law, policy making, and harmonising information, would be important drivers and the best guidance for further assessments. ISARM can still make contributions, but it could be redesigned to support resolving TBAs issues which, in addition to science (hydrogeology), require considering social, political, economic and environmental factors. ISARM can increase its international dimension in the continents that still lag behind the assessment and shared management of TBAs, such as Asia and Africa.
    Print ISSN: 2214-5818
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-02-04
    Description: Purpose   The main goal of this paper was to analyse the environmental profile of a structural component of a wooden house: a ventilated wooden wall, by combining two environmental methodologies: one quantitative, the life cycle assessment (LCA) and another qualitative, the design for the environment (DfE). Methods   The LCA study covers the whole life cycle of the ventilated wall manufacture as well as its distribution, installation and maintenance. To carry out this analysis, a Galician wood company was assessed in detail, dividing the process into four stages: the assembling stage, the packing stage, the distribution to clients as well as the final installation and maintenance of the wooden wall. Ten impact categories have been assessed in detail in the LCA study: abiotic depletion (AD), acidification (AC), eutrophication (EP), global warming (GW), ozone layer depletion (OD), human toxicity (HT), fresh water aquatic ecotoxicity (FE), marine aquatic ecotoxicity (ME), terrestrial ecotoxicity (TE) and photochemical oxidant formation (PO). Results and discussion   According to the environmental results, the assembling stage was the most important contributor to the environmental profile with contributions from 57% to 87%, followed by the production of the electricity required. The detailed analysis of the assembling stage identified the most important environmental hot spots: the production of boards used in the structure [oriented strand board and medium density fibreboard (MDF)] as well as the transportation of the cedar sheets from Brazil. Concerning the results of the DfE, a selection of different eco-design strategies was proposed from technological, economic and social points of view by an interdisciplinary team of researchers and company´s workers. The eco-design strategy considered the following improvement actions: (i) the substitution of the MDF in the wall structure; (ii) the use of German red pine sheets; (iii) the installation of solar panels in the facilities; (iv) the use of Euro 5 transport vehicles, (v) the use of biodiesel for transport; (vi) the definition of a maintenance protocol for the wooden materials; and (vii) the definition of a protocol for the separation of materials before disposal. Conclusions   The results obtained in this work allow predicting the influence of the selection and origin of the raw materials used on the environmental burdens associated with the process. Future work will focus on the manufacturing of a prototype of an eco-designed ventilated wooden wall. Content Type Journal Article Category WOOD AND OTHER RENEWABLE RESOURCES Pages 1-12 DOI 10.1007/s11367-012-0384-0 Authors Sara González-García, Department of Life Sciences, Division of Biology, Imperial College of London, South Kensington Campus, Sir Alexander Fleming Buildings, London, SW7 2AZ UK Raúl García Lozano, SosteniPrA (UAB-IRTA-Inèdit), Institute of Environmental Science and Technology (ICTA), School of Engineering, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Catalonia, Spain Javier Costas Estévez, Quality Management Department, Las cinco Jotas, Avda. Camelias No 1, 6203 Vigo, Spain Rosario Castilla Pascual, Innovation and Technology Area, CIS MADEIRA, Galician Park of Technology, Avenida de Galicia 5, San Cibrao das Viñas, 32901 Ourense, Spain Ma. Teresa Moreira, Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain Xavier Gabarrell, SosteniPrA (UAB-IRTA-Inèdit), Institute of Environmental Science and Technology (ICTA), School of Engineering, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Catalonia, Spain Joan Rieradevall i Pons, SosteniPrA (UAB-IRTA-Inèdit), Institute of Environmental Science and Technology (ICTA), School of Engineering, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Catalonia, Spain Gumersindo Feijoo, Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain Journal The International Journal of Life Cycle Assessment Online ISSN 1614-7502 Print ISSN 0948-3349
    Print ISSN: 0948-3349
    Electronic ISSN: 1614-7502
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Economics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-09-10
    Description: Purpose   At present, many urban areas in Mediterranean climates are coping with water scarcity, facing a growing water demand and a limited conventional water supply. Urban design and planning has so far largely neglected the benefits of rainwater harvesting (RWH) in the context of a sustainable management of this resource. Therefore, the purpose of this study was to identify the most environmentally friendly strategy for rainwater utilization in Mediterranean urban environments of different densities. Materials and methods   The RWH systems modeled integrate the necessary infrastructures for harvesting and using rainwater in newly constructed residential areas. Eight scenarios were defined in terms of diffuse (D) and compact (C) urban models and the tank locations ((1) underground tank, (2) below-roof tank, (3) distributed-over-roof tank, and (4) block tank). The structural and hydraulic sizing of the catchment, storage, and distribution subsystems was taken into account using an average Mediterranean rainfall, the area of the harvesting surfaces, and a constant water demand for laundry. The quantification of environmental impacts was performed through a life cycle assessment, using CML 2001 Baseline method. The necessary materials and processes were considered in each scenario according to the lifecycle stages (i.e., materials, construction, transportation, use, and deconstruction) and subsystems. Results and discussion   The environmental characterization indicated that the best scenario in both urban models is the distributed-over-roof tank (D3, C3), which provided a reduction in impacts compared to the worst scenario of up to 73% in diffuse models and even higher in compact ones, 92% in the most dramatic case. The lower impacts are related to the better distribution of tank weight on the building, reducing the reinforcement requirements, and enabling energy savings. The storage subsystem and the materials stage contributed most significantly to the impacts in both urban models. In the compact density model, the underground-tank scenario (C1) presented the largest impacts in most categories due to its higher energy consumption. Additionally, more favorable environmental results were observed in compact densities than in diffuse ones for the Global Warming Potential category along with higher water efficiencies. Conclusions   The implementation of one particular RWH scenario over another is not irrelevant in drought-stress environments. Selecting the most favorable scenario in the development of newly constructed residential areas provides significant savings in CO 2 emissions in comparison with retrofit strategies. Therefore, urban planning should consider the design of RWH infrastructures using environmental criteria in addition to economic, social, and technological factors, adjusting the design to the potential uses for which the rainwater is intended. Recommendations and perspectives   Additional research is needed to quantify the energy savings associated with the insulation caused by using the tank distributed over the roof. The integration of the economic and social aspects of these infrastructures in the analysis, from a life cycle approach, is necessary for targeting the planning and design of more sustainable cities in an integrated way. Content Type Journal Article Category WATER USE IN LCA Pages 1-18 DOI 10.1007/s11367-011-0330-6 Authors Sara Angrill, Sostenipra (ICTA-IRTA-Inèdit), Institute of Environmental Science and Technology (ICTA), School of Engineering (EE), Universitat Autònoma de Barcelona (UAB), Campus of the UAB, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Catalonia, Spain Ramon Farreny, Sostenipra (ICTA-IRTA-Inèdit), Institute of Environmental Science and Technology (ICTA), School of Engineering (EE), Universitat Autònoma de Barcelona (UAB), Campus of the UAB, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Catalonia, Spain Carles M. Gasol, Sostenipra (ICTA-IRTA-Inèdit), Institute of Environmental Science and Technology (ICTA), School of Engineering (EE), Universitat Autònoma de Barcelona (UAB), Campus of the UAB, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Catalonia, Spain Xavier Gabarrell, Sostenipra (ICTA-IRTA-Inèdit), Institute of Environmental Science and Technology (ICTA), School of Engineering (EE), Universitat Autònoma de Barcelona (UAB), Campus of the UAB, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Catalonia, Spain Bernat Viñolas, Department of Geotechnical Engineering and Geosciences, School of Civil Engineering (ETSECCPB), Technical University of Catalonia—Barcelona Tech (UPC), Campus Nord, C/ Jordi Girona 1-3, Building D2, 08034 Barcelona, Catalonia, Spain Alejandro Josa, Department of Geotechnical Engineering and Geosciences, School of Civil Engineering (ETSECCPB), Technical University of Catalonia—Barcelona Tech (UPC), Campus Nord, C/ Jordi Girona 1-3, Building D2, 08034 Barcelona, Catalonia, Spain Joan Rieradevall, Sostenipra (ICTA-IRTA-Inèdit), Institute of Environmental Science and Technology (ICTA), School of Engineering (EE), Universitat Autònoma de Barcelona (UAB), Campus of the UAB, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Catalonia, Spain Journal The International Journal of Life Cycle Assessment Online ISSN 1614-7502 Print ISSN 0948-3349
    Print ISSN: 0948-3349
    Electronic ISSN: 1614-7502
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Economics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-04-30
    Description: Purpose   Land use is a main driver of global biodiversity loss and its environmental relevance is widely recognized in research on life cycle assessment (LCA). The inherent spatial heterogeneity of biodiversity and its non-uniform response to land use requires a regionalized assessment, whereas many LCA applications with globally distributed value chains require a global scale. This paper presents a first approach to quantify land use impacts on biodiversity across different world regions and highlights uncertainties and research needs. Methods   The study is based on the United Nations Environment Programme (UNEP)/Society of Environmental Toxicology and Chemistry (SETAC) land use assessment framework and focuses on occupation impacts, quantified as a biodiversity damage potential (BDP). Species richness of different land use types was compared to a (semi-)natural regional reference situation to calculate relative changes in species richness. Data on multiple species groups were derived from a global quantitative literature review and national biodiversity monitoring data from Switzerland. Differences across land use types, biogeographic regions (i.e., biomes), species groups and data source were statistically analyzed. For a data subset from the biome (sub-)tropical moist broadleaf forest, different species-based biodiversity indicators were calculated and the results compared. Results and discussion   An overall negative land use impact was found for all analyzed land use types, but results varied considerably. Different land use impacts across biogeographic regions and taxonomic groups explained some of the variability. The choice of indicator also strongly influenced the results. Relative species richness was less sensitive to land use than indicators that considered similarity of species of the reference and the land use situation. Possible sources of uncertainty, such as choice of indicators and taxonomic groups, land use classification and regionalization are critically discussed and further improvements are suggested. Data on land use impacts were very unevenly distributed across the globe and considerable knowledge gaps on cause–effect chains remain. Conclusions   The presented approach allows for a first rough quantification of land use impact on biodiversity in LCA on a global scale. As biodiversity is inherently heterogeneous and data availability is limited, uncertainty of the results is considerable. The presented characterization factors for BDP can approximate land use impacts on biodiversity in LCA studies that are not intended to directly support decision-making on land management practices. For such studies, more detailed and site-dependent assessments are required. To assess overall land use impacts, transformation impacts should additionally be quantified. Therefore, more accurate and regionalized data on regeneration times of ecosystems are needed. Content Type Journal Article Category GLOBAL LAND USE IMPACTS ON BIODIVERSITY AND ECOSYSTEM SERVICES IN LCA Pages 1-15 DOI 10.1007/s11367-012-0412-0 Authors Laura de Baan, Institute for Environmental Decisions, Natural and Social Science Interface, ETH Zurich, Universitaetsstr. 22, 8092 Zurich, Switzerland Rob Alkemade, PBL Netherlands Environmental Assessment Agency, P. O. Box 303, 3720 AH Bilthoven, The Netherlands Thomas Koellner, Professorship of Ecological Services, Faculty of Biology, Chemistry and Geosciences, University of Bayreuth, GEO II, Room 1.17, Universitaetsstr. 30, 95440 Bayreuth, Germany Journal The International Journal of Life Cycle Assessment Online ISSN 1614-7502 Print ISSN 0948-3349
    Print ISSN: 0948-3349
    Electronic ISSN: 1614-7502
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Economics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-07-16
    Description: Purpose   The aim of this paper is to provide science-based consensus and guidance for health effects modelling in comparative assessments based on human exposure and toxicity. This aim is achieved by (a) describing the USEtox™ exposure and toxicity models representing consensus and recommended modelling practice, (b) identifying key mechanisms influencing human exposure and toxicity effects of chemical emissions, (c) extending substance coverage. Methods   The methods section of this paper contains a detailed documentation of both the human exposure and toxic effects models of USEtox™, to determine impacts on human health per kilogram substance emitted in different compartments. These are considered as scientific consensus and therefore recommended practice for comparative toxic impact assessment. The framework of the exposure model is described in details including the modelling of each exposure pathway considered (i.e. inhalation through air, ingestion through (a) drinking water, (b) agricultural produce, (c) meat and milk, and (d) fish). The calculation of human health effect factors for cancer and non-cancer effects via ingestion and inhalation exposure respectively is described. This section also includes discussions regarding parameterisation and estimation of input data needed, including route-to-route and acute-to-chronic extrapolations. Results and discussion   For most chemicals in USEtox™, inhalation, above-ground agricultural produce, and fish are the important exposure pathways with key driving factors being the compartment and place of emission, partitioning, degradation, bioaccumulation and bioconcentration, and dietary habits of the population. For inhalation, the population density is the key factor driving the intake, thus the importance to differentiate emissions in urban areas, except for very persistent and mobile chemicals that are taken in by the global population independently from their place of emission. The analysis of carcinogenic potency (TD 50 ) when volatile chemicals are administrated to rats and mice by both inhalation and an oral route suggests that results by one route can reasonably be used to represent another route. However, we first identify and mark as interim chemicals for which observed tumours are directly related to a given exposure route (e.g. for nasal or lung, or gastrointestinal cancers) or for which absorbed fraction by inhalation and by oral route differ greatly. Conclusions   A documentation of the human exposure and toxicity models of USEtox™ is provided, and key factors driving the human health characterisation factor are identified. Approaches are proposed to derive human toxic effect factors and expand the number of chemicals in USEtox™, primarily by extrapolating from an oral route to exposure in air (and optionally acute-to-chronic). Some exposure pathways (e.g. indoor inhalation, pesticide residues, dermal exposure) will be included in a later stage. USEtox™ is applicable in various comparative toxicity impact assessments and not limited to LCA. Content Type Journal Article Pages 1-18 DOI 10.1007/s11367-011-0316-4 Authors Ralph K. Rosenbaum, Section for Quantitative Sustainability Assessment, Department of Management Engineering, Technical University of Denmark (DTU), Produktionstorvet, Building 426, 2800 Lyngby, Denmark Mark A. J. Huijbregts, Department of Environmental Science, Radboud University Nijmegen, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands Andrew D. Henderson, Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA Manuele Margni, Department of Chemical Engineering, CIRAIG, École Polytechnique de Montréal, 2900 Édouard-Montpetit, P.O. Box 6079, Stn. Centre-ville, Montréal, Québec H3C 3A7, Canada Thomas E. McKone, University of California Berkeley, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA Dik van de Meent, Department of Environmental Science, Radboud University Nijmegen, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands Michael Z. Hauschild, Section for Quantitative Sustainability Assessment, Department of Management Engineering, Technical University of Denmark (DTU), Produktionstorvet, Building 426, 2800 Lyngby, Denmark Shanna Shaked, Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA Ding Sheng Li, Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA Lois S. Gold, University of California Berkeley, and Children’s Hospital Oakland Research Institute (CHORI), Oakland, CA, USA Olivier Jolliet, Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA Journal The International Journal of Life Cycle Assessment Online ISSN 1614-7502 Print ISSN 0948-3349
    Print ISSN: 0948-3349
    Electronic ISSN: 1614-7502
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Economics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-09-03
    Description:    Soil carbon stocks and sequestration have been given a lot of attention recently in the study of terrestrial ecosystems and global climate change. This review focuses on the progress made on the estimation of the soil carbon stocks of China, and the characterization of carbon dynamics of croplands with regard to climate change, and addresses issues on the mineralization of soil organic carbon in relation to greenhouse gas emissions. By integrating existing research data, China’s total soil organic carbon (SOC) stock is estimated to be 90 Pg and its inorganic carbon (SIC) stock as 60 Pg, with SOC sequestration rates in the range of 20–25 Tg/a for the last two decades. An estimation of the biophysical potential of SOC sequestration has been generally agreed as being 2 Pg over the long term, of which only 1/3 could be attainable using contemporary agricultural technologies in all of China’s croplands. Thus, it is critical to enhance SOC sequestration and mitigate climate change to improve agricultural and land use management in China. There have been many instances where SOC accumulation may not induce an increased amount of decomposition under a warming scenario but instead favor improved cropland productivity and ecosystem functioning. Furthermore, unchanged or even decreased net global warming potential (GWP) from croplands with enhanced SOC has been reported by a number of case studies using life cycle analysis. Future studies on soil carbon stocks and the sequestration potential of China are expected to focus on: (1) Carbon stocks and the sequestration capacity of the earths’ surface systems at scales ranging from the plot to the watershed and (2) multiple interface processes and the synergies between carbon sequestration and ecosystem productivity and ecosystem functioning at scales from the molecular level to agro-ecosystems. Soil carbon science in China faces new challenges and opportunities to undertake integrated research applicable to many areas. Content Type Journal Article Category Review Pages 1-11 DOI 10.1007/s11434-011-4693-7 Authors JuFeng Zheng, Institute for Resource, Ecosystem and Environment of Agriculture, and Research Center of Agriculture and Climate Change, Nanjing Agricultural University, Nanjing, 210095 China Kun Cheng, Institute for Resource, Ecosystem and Environment of Agriculture, and Research Center of Agriculture and Climate Change, Nanjing Agricultural University, Nanjing, 210095 China GenXing Pan, Institute for Resource, Ecosystem and Environment of Agriculture, and Research Center of Agriculture and Climate Change, Nanjing Agricultural University, Nanjing, 210095 China Pete Smith, Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, 23 St Machar Drive, Aberdeen, AB24 3UU UK LianQing Li, Institute for Resource, Ecosystem and Environment of Agriculture, and Research Center of Agriculture and Climate Change, Nanjing Agricultural University, Nanjing, 210095 China XuHui Zhang, Institute for Resource, Ecosystem and Environment of Agriculture, and Research Center of Agriculture and Climate Change, Nanjing Agricultural University, Nanjing, 210095 China JinWei Zheng, Institute for Resource, Ecosystem and Environment of Agriculture, and Research Center of Agriculture and Climate Change, Nanjing Agricultural University, Nanjing, 210095 China XiaoJun Han, Institute for Resource, Ecosystem and Environment of Agriculture, and Research Center of Agriculture and Climate Change, Nanjing Agricultural University, Nanjing, 210095 China YanLing Du, Institute for Resource, Ecosystem and Environment of Agriculture, and Research Center of Agriculture and Climate Change, Nanjing Agricultural University, Nanjing, 210095 China Journal Chinese Science Bulletin Online ISSN 1861-9541 Print ISSN 1001-6538
    Print ISSN: 1001-6538
    Electronic ISSN: 1861-9541
    Topics: Natural Sciences in General
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-03-18
    Description: Global climate change is exerting profound effects on organisms and ecosystems. As resource managers and policymakers must contend with the ongoing and future effects of global climate change, they challenge scientists to predict where, when, and with what magnitude these effects are most likely to occur. By understanding the processes by which human-managed and natural ecosystems respond to a changing climate, and by quantifying levels of confidence in our ability to predict these effects, we may be able to prepare for some of these impacts, a form of adaptation to climate change. Here, we describe how knowledge of physiology can help to inform management decisions. Because physiological tolerance to environmental factors varies between species, there will likely be “winners” and “losers” in the face of climate change. We explore how a failure to consider the details of an organism’s physiology and ecology can hamper efforts to respond proactively to climate change and, conversely, how an understanding of how nonhuman organisms interact with their environment can help to provide a framework for anticipating and preparing for future changes in natural and managed ecosystems. We examine some of the physiological responses of marine organisms to climate change in three examples: thermal stress in marine invertebrates, ramifications of water temperature changes on fish bioenergetics and thus on fish reproduction and growth, and effects of changes in wave forces on damage to corals and kelp. Because factors such as temperature interact with other stressors like overexploitation and pollution to drive patterns of mortality, it may be possible to prevent some damage by reducing the impact of stressors not related to climate change. Methods such as ecological forecasting and the utilization of bioenergetic budgets can be used to help guide future adaptation to climate change by providing forecasts within a probabilistic framework. Author:  Brian Helmuth Lauren Yamane Katharine J. Mach Shilpi Chhotray Phil Levin Sarah Woodin Issue:  Climate change Download:  61_Helmuth Final.pdf
    Electronic ISSN: 2161-2331
    Topics: Natural Sciences in General , Political Science , Law
    Published by Stanford University
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-03-13
    Description:    Since Westman (1977) and Ehrlich (1982) put forward the concepts of “the service of nature” and “ecosystem service functions”, respectively, methods for conducting value accounting for them, and their practical application have become the subjects of intense study. Based on an overview of available research findings, we discuss three scientific hypotheses. First, the terrestrial ecosystem offers both positive and negative service functions. Second, changes in terrestrial ecosystem service functions lie not only in the number of ecosystem types and the coverage area of each type, but also in their quality. Third, the value of terrestrial ecosystem service functions should be assessed both in terms of the value stocked and the value added. We collected land use data from China during the period 1999–2008, and Normalized Difference Vegetation Index data based on remote sensing images from the Global Inventory Modeling and Mapping Studies for the same period. We then calculated and analyzed spatial and temporal changes in China’s terrestrial ecosystem service values over the 10-year period. Considering temporal change, the total value (stocked) of China’s terrestrial ecosystem service functions decreased from 6.82 trillion Yuan RMB in 1999 to 6.57 trillion Yuan RMB in 2008. During that period, the positive value decreased by 240.17 billion Yuan RMB and the negative value increased by 8.85 billion Yuan RMB. The decrease in total value lies mainly in the humidity control, soil formation, and waste recycling functions. The total value (added) of China’s terrestrial ecosystem service functions increased by 4.31 billion Yuan RMB in 2000, but decreased by 0.13 billion Yuan RMB in 2008 (based on the constant price of China in 1999). The value (added) was a negative figure. From the perspective of spatial change, we can see that the supply of China’s terrestrial ecosystem service functions fell slightly over the past 10 years, mainly in Northeast and Southern China. As a result of human activities on ecosystems, the loss of ecosystem service functions’ value was relatively prominent in Shanxi and Gansu provinces, compared with an increase in value in Shaanxi Province. Terrestrial ecosystem service functions’ value per unit area was relatively high in mid- and East China, showing a prominent spatial change over the 10-year period, but low in Western China. Some conclusions are drawn after an in-depth analysis of the factors causing the spatial and temporal changes in China’s terrestrial ecosystem service functions, in the hope that our suggestions will be helpful for the management of China’s terrestrial ecosystems. Content Type Journal Article Category Article Pages 1-12 DOI 10.1007/s11434-012-4978-5 Authors Yao Shi, State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China RuSong Wang, State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China JinLou Huang, State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China WenRui Yang, Beijing Municipal Institute of City Planning and Design, Beijing, 100045 China Journal Chinese Science Bulletin Online ISSN 1861-9541 Print ISSN 1001-6538
    Print ISSN: 1001-6538
    Electronic ISSN: 1861-9541
    Topics: Natural Sciences in General
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-04-14
    Description:    Understanding the characteristics of historical droughts will benefit water resource managers because it will reveal the possible impacts that future changes in climate may have on drought, and subsequently, the availability of water resources. The goal of this study was to reconstruct historical drought occurrences and assess future drought risk for the drought-prone Blue River Basin in Oklahoma, under a likely changing climate using three types of drought indices, i.e., Standardized Precipitation Index (SPI), Palmer Drought Severity Index (PDSI) and Standardized Runoff Index (SRI). No similar research has been conducted in this region previously. Monthly precipitation and temperature data from the observational period 1950–1999 and over the projection period 2010–2099 from 16 statistically downscaled Global Climate Models (GCM) were used to compute the duration, severity, and extent of meteorological droughts. Additionally, soil moisture, evapotranspiration (ET), and runoff data from the well-calibrated Thornthwaite Monthly Water Balance Model were used to examine drought from a hydrological perspective. The results show that the three indices captured the historical droughts for the past 50 years and suggest that more severe droughts of wider extent are very likely to occur over the next 90 years in the Blue River Basin, especially in the later part of the 21st century. In fact, all three indices display lower minimum values than those ever recorded in the past 50 years. This study also found that SRI and SPI (PDSI) had a correlation coefficient of 0.81 (0.78) with a 2-month (no appreciable) lag time over the 1950–2099 time period across the basin. There was relatively lower correlation between SPI and PDSI over the same period. Although this study recommends that PDSI and SRI are the most suitable indices for assessing future drought risks under an increasingly warmer climate, more drought indices from ecological and socioeconomic perspectives should be investigated and compared to provide a complete picture of drought and its potential impacts on the dynamically coupled nature-human system. Content Type Journal Article Pages 1-19 DOI 10.1007/s11269-012-0044-y Authors Lu Liu, School of Civil Engineering and Environmental Science, University of Oklahoma, 202 W. Boyd St., Room 334, Norman, OK 73019-1024, USA Yang Hong, School of Civil Engineering and Environmental Science, University of Oklahoma, 202 W. Boyd St., Room 334, Norman, OK 73019-1024, USA Christopher N. Bednarczyk, Research Experiences for Undergraduates Program, National Weather Center, University of Oklahoma, Norman, OK, USA Bin Yong, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098 China Mark A. Shafer, Southern Climate Impacts Planning Program, Oklahoma Climatological Survey, University of Oklahoma, 120 David L. Boren Blvd., Suite 2900, Norman, OK 73072, USA Rachel Riley, Southern Climate Impacts Planning Program, Oklahoma Climatological Survey, University of Oklahoma, 120 David L. Boren Blvd., Suite 2900, Norman, OK 73072, USA James E. Hocker, Southern Climate Impacts Planning Program, Oklahoma Climatological Survey, University of Oklahoma, 120 David L. Boren Blvd., Suite 2900, Norman, OK 73072, USA Journal Water Resources Management Online ISSN 1573-1650 Print ISSN 0920-4741
    Print ISSN: 0920-4741
    Electronic ISSN: 1573-1650
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-11-28
    Description: Publication year: 2011 Source: Journal of Hydrology, Available online 25 November 2011 Shahbaz Khan The sample papers collected in this special volume represent the interdisciplinary studies presented at a major international conference that took place in San Diego, USA, October 11 – 13, 2010 in collaboration with UNESCO’s International Hydrological Program (IHP) Hydrology for the Environment Life and Policy (HELP) network and the Elsevier Journal of Hydrology. This conference targeted the emerging interdisciplinary science themes at the interface between hydrology and other scientific disciplines, including climate change, biology, chemistry and social sciences. These subjects are of particular relevance to current global water crisis, since population increases and a changing climate is bringing new pressures on hydrological systems around the world. The papers presented at the conference focused on the following five interdisciplinary themes:•Hydrology and climate change.•Hydrology, bio-geochemistry and environmental management.•Hydrology, health and improved socio-economic conditions.•Hydrology, history and conflicts.•Hydrology: past, present and future developments.This effort has highlighted the need to further focus hydrological research at the interdisciplinary interfaces between biophysical, social and economic sciences to assist with evidence based legislation and policy making in real catchments while empowering stakeholders in pursuit of real answers.
    Print ISSN: 0022-1694
    Electronic ISSN: 1879-2707
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...