GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-11-17
    Description: During the 1-year MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition, the German icebreaker Polarstern drifted through Arctic Ocean ice from October 2019 to May 2020, mainly at latitudes between 85 and 88.5∘ N. A multiwavelength polarization Raman lidar was operated on board the research vessel and continuously monitored aerosol and cloud layers up to a height of 30 km. During our mission, we expected to observe a thin residual volcanic aerosol layer in the stratosphere, originating from the Raikoke volcanic eruption in June 2019, with an aerosol optical thickness (AOT) of 0.005–0.01 at 500 nm over the North Pole area during the winter season. However, the highlight of our measurements was the detection of a persistent, 10 km deep aerosol layer in the upper troposphere and lower stratosphere (UTLS), from about 7–8 to 17–18 km height, with clear and unambiguous wildfire smoke signatures up to 12 km and an order of magnitude higher AOT of around 0.1 in the autumn of 2019. Case studies are presented to explain the specific optical fingerprints of aged wildfire smoke in detail. The pronounced aerosol layer was present throughout the winter half-year until the strong polar vortex began to collapse in late April 2020. We hypothesize that the detected smoke originated from extraordinarily intense and long-lasting wildfires in central and eastern Siberia in July and August 2019 and may have reached the tropopause layer by the self-lifting process. In this article, we summarize the main findings of our 7-month smoke observations and characterize the aerosol in terms of geometrical, optical, and microphysical properties. The UTLS AOT at 532 nm ranged from 0.05–0.12 in October–November 2019 and 0.03–0.06 during the main winter season. The Raikoke aerosol fraction was estimated to always be lower than 15 %. We assume that the volcanic aerosol was above the smoke layer (above 13 km height). As an unambiguous sign of the dominance of smoke in the main aerosol layer from 7–13 km height, the particle extinction-to-backscatter ratio (lidar ratio) at 355 nm was found to be much lower than at 532 nm, with mean values of 55 and 85 sr, respectively. The 355–532 nm Ångström exponent of around 0.65 also clearly indicated the presence of smoke aerosol. For the first time, we show a distinct view of the aerosol layering features in the High Arctic from the surface up to 30 km height during the winter half-year. Finally, we provide a vertically resolved view on the late winter and early spring conditions regarding ozone depletion, smoke occurrence, and polar stratospheric cloud formation. The latter will largely stimulate research on a potential impact of the unexpected stratospheric aerosol perturbation on the record-breaking ozone depletion in the Arctic in spring 2020.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    COPERNICUS GESELLSCHAFT MBH
    In:  EPIC3Atmospheric Chemistry and Physics, COPERNICUS GESELLSCHAFT MBH, 20(6), pp. 3459-3481, ISSN: 1680-7316
    Publication Date: 2020-04-02
    Description: Low-level mixed-phase clouds (MPCs) are common in the Arctic. Both local and large-scale phenomena influence the properties and lifetime of MPCs. Arctic fjords are characterized by complex terrain and large variations in surface properties. Yet, not many studies have investigated the impact of local boundary layer dynamics and their relative importance on MPCs in the fjord environment. In this work, we used a combination of ground-based remote sensing instruments, surface meteorological observations, radiosoundings, and reanalysis data to study persistent low-level MPCs at Ny-Ålesund, Svalbard, for a 2.5-year period. Methods to identify the cloud regime, surface coupling, and regional and local wind patterns were developed. We found that persistent low-level MPCs were most common with westerly winds, and the westerly clouds had a higher mean liquid (42 g m−2) and ice water path (16 g m−2) compared to those with easterly winds. The increased height and rarity of persistent MPCs with easterly free-tropospheric winds suggest the island and its orography have an influence on the studied clouds. Seasonal variation in the liquid water path was found to be minimal, although the occurrence of persistent MPCs, their height, and their ice water path all showed notable seasonal dependency. Most of the studied MPCs were decoupled from the surface (63 %–82 % of the time). The coupled clouds had 41 % higher liquid water path than the fully decoupled ones. Local winds in the fjord were related to the frequency of surface coupling, and we propose that katabatic winds from the glaciers in the vicinity of the station may cause clouds to decouple. We concluded that while the regional to large-scale wind direction was important for the persistent MPC occurrence and properties, the local-scale phenomena (local wind patterns in the fjord and surface coupling) also had an influence. Moreover, this suggests that local boundary layer processes should be described in models in order to present low-level MPC properties accurately.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...