GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • Articles  (2)
  • conservatism  (1)
  • expansion progress  (1)
  • Wiley  (2)
  • 1
    Publication Date: 2024-03-31
    Description: Aim: Amazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types. Location: Amazonia. Taxon: Angiosperms (Magnoliids; Monocots; Eudicots). Methods: Data for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran's eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny. Results: In the terra firme and várzea forest types, the phylogenetic composition varies by geographic region, but the igapó and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R2= 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R2= 28%). A greater number of lineages were significant indicators of geographic regions than forest types. Main Conclusion: Numerous tree lineages, including some ancient ones (〉66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions.
    Keywords: community assembly ; dispersal limitation ; environmental selection ; evolutionary principal ; component analysis ; indicator lineage analysis ; Moran's eigenvector maps ; neotropics ; Niche ; conservatism ; tropical rain forests
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-14
    Description: Coral reef ecosystems in Indonesia are under threat due to changes in the environment driven by global climate change, along with local disturbances such as sedimentation and eutrophication. Consequently, comprehensive coral reef monitoring \nactivities have been initiated at numerous locations across Indonesia. In this study, the \nfindings from coral reef health surveys across 14 reef sites (within 40 hectares) in the \nBintan area (Riau Archipelago, Indonesia; 100\xe2\x80\x89km southeast of Singapore) revealed a \npotentially novel epizoic yellow sponge species (Phorbas sp.) that overgrows coral colonies. This species, tentatively classified as a new Phorbas sp. (order Poecilosclerida: \nfamily Hymedesmiidae), was identified through a combined approach employing classical taxonomic methods along with DNA barcoding using the cytochrome c oxidase \nI (COI) gene. At every site, three permanent 20-m transects were established to annually monitor live coral coverage and species composition between 2014 and 2017. \nThe survey indicated a notable change in the overall coral cover during this period. \nThe abundance of coral diseases was investigated in 2014 and 2017. Additionally, the \nprogress of Phorbas sp., was closely monitored (i.e., every second day for one week) \nat Bintan Island (site 11) during the dry season in August 2017. This approach aimed \nto approximate the relative impact of each incident on the coral\'s condition. The results indicated that the most comprehensive change occurred due to the overgrowth \nof Phorbas sp., which affected 12 scleractinian coral species across eight genera in \nalmost all sites except one. The abundance of this epizoic sponge infestation was \nhighest at Pulau Beralas Pasir (site 10), constituting 22.9% of all recorded life forms, \nand lowest at Pulau Pangkil-Besar (site 13), with only 0.7%. The expansion of the thin \nyellow sponge tissue was estimated to increase by up to 0.51\xe2\x80\x89\xc2\xb1\xe2\x80\x890.48\xe2\x80\x89cm2 \n per day on \nPorites coral.
    Keywords: coral disease ; coral health ; expansion progress ; novel sponge ; yellow band disease
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...