GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • Articles  (66)
  • ddc:600  (65)
  • 03. Hydrosphere::03.04. Chemical and biological::03.04.01. Biogeochemical cycles  (1)
  • Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie  (64)
  • Berlin : Agora Industry  (1)
  • Deutsches GeoForschungsZentrum GFZ
  • Elsevier
Document type
  • Journals
  • Articles  (66)
Source
Language
  • 11
    Publication Date: 2022-02-18
    Description: As illustrated by the case studies of end-of-life vehicles and waste electric and electronic equipment, the approach of an extended producer responsibility is undermined by the exports of used and waste products. This fact causes severe deficits regarding circular flows, especially of critical raw materials such as platinum group metals. With regard to global recycling there seems to be a responsibility gap which leads somehow to open ends of waste flows and a loss or down-cycling of potential secondary resources. Existing product-orientated extended producer responsibility (EPR) approaches with mass-based recycling quotas do not create adequate incentives to supply waste materials containing precious metals to a high-quality recycling and should be amended by aspects of a material stewardship. The paper analyses incentive effects on EPR for the mentioned product groups and metals, resulting from existing regulations in Germany. It develops a proposal for an international covenant on metal recycling as a policy instrument for a governance-oriented framework to initiate systemic innovations along the complete value chain taking into account product group- and resource group-specific aspects on different spatial levels. It aims at the effective implementation of a central idea of EPR, the transition of a waste regime still focusing on safe disposal towards a sustainable management of resources for the complete lifecycle of products.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2024-05-23
    Description: The steel industry is responsible for eight per cent of global CO2 emissions. As more than seven out of ten of today's coal-fired blast furnaces are due to be refurbished or replaced in the 2020s, there is a key window of opportunity to shift to low-emission production methods before the end of this decade. The analysis by Agora Industry, Wuppertal Institute and Lund University assesses eight potential breakthrough technologies in terms of their market readiness, cost and impact on emissions. The methods analysed include the use of hydrogen to produce direct reduced iron, scrap-based electric arc furnaces, electrolysis and the implementation of carbon capture in existing coal-fired facilities. While some of these technologies can already be deployed today to kick-start the market for green steel, others will take more time to reach technological maturity, but show promise in the long-term. A third group may never turn into adequate solutions for decarbonising the steel sector. In their analysis, the scientists conclude that scrap and hydrogen-based methods hold the biggest promise for companies aiming to make the switch this decade. By contrast, retrofitting existing coal-based facilities with carbon capture and storage (CCS) technology entails the biggest economic and environmental risk, the authors find. Regardless of the technologies chosen, appropriate regulatory frameworks, international cooperation, and targeted incentives are necessary to boost demand for green steel and promote its production. At the same time, such measures can help steer manufacturers away from costly technological dependencies.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie | Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie
    Publication Date: 2022-02-18
    Description: A policy framework for sustainable resource management (SRM) is required both to guarantee the materials and energy supply of the EU economy and safeguard the natural resource basis in the future. Goals and strategies for sustaining the metabolism of the economy are described. Data are presented on the material throughput and physical growth of the EU's economy, on total material requirements (TMR), its composition, the decoupling from economic growth, and the increased shift to other regions. A first future target Material Flow Balance (t- MFB) of the EU is outlined. Detailed data reveal the "top ten" resource flows. Policy design for SRM should aim at an integrated and balanced approach along the material flow, comprising resource extraction, the product cycle and final waste disposal. Strategies and potential instruments to manage fossil fuels, metals and industrial minerals, construction minerals and excavation are discussed. Possible priorities and examples are given for target setting, focusing on limited expansion of built-up area, reduced use of non-renewables, increased resource productivity, and shift to sustainable cultivation of biomass.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: workingpaper , doc-type:workingPaper
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-04-04
    Description: Society’s needs for a network of in situ ocean observing systems cross many areas of earth and marine science. Here we review the science themes that benefit from data supplied from ocean observatories. Understanding from existing studies is fragmented to the extent that it lacks the coherent long-term monitoring needed to address questions at the scales essential to understand climate change and improve geo-hazard early warning. Data sets from the deep sea are particularly rare with long-term data available from only a few locations worldwide. These science areas have impacts on societal health and well-being and our awareness of ocean function in a shifting climate. Substantial efforts are underway to realise a network of open-ocean observatories around European Seas that will operate over multiple decades. Some systems are already collecting high-resolution data from surface, water column, seafloor, and sub-seafloor sensors linked to shore by satellite or cable connection in real or near-real time, along with samples and other data collected in a delayed mode. We expect that such observatories will contribute to answering major ocean science questions including: How can monitoring of factors such as seismic activity, pore fluid chemistry and pressure, and gas hydrate stability improve seismic, slope failure, and tsunami warning? What aspects of physical oceanography, biogeochemical cycling, and ecosystems will be most sensitive to climatic and anthropogenic change? What are natural versus anthropogenic changes? Most fundamentally, how are marine processes that occur at differing scales related? The development of ocean observatories provides a substantial opportunity for ocean science to evolve in Europe. Here we also describe some basic attributes of network design. Observatory networks provide the means to coordinate and integrate the collection of standardised data capable of bridging measurement scales across a dispersed area in European Seas adding needed certainty to estimates of future oceanic conditions. Observatory data can be analysed along with other data such as those from satellites, drifting floats, autonomous underwater vehicles, model analysis, and the known distribution and abundances of marine fauna in order to address some of the questions posed above. Standardised methods for information management are also becoming established to ensure better accessibility and traceability of these data sets and ultimately to increase their use for societal benefit. The connection of ocean observatory effort into larger frameworks including the Global Earth Observation System of Systems (GEOSS) and the Global Monitoring of Environment and Security (GMES) is integral to its success. It is in a greater integrated framework that the full potential of the component systems will be realised.
    Description: Published
    Description: 1-33
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: reserved
    Keywords: Seafloor and water columnobservatories ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics ; 01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models ; 03. Hydrosphere::03.01. General::03.01.07. Physical and biogeochemical interactions ; 03. Hydrosphere::03.01. General::03.01.08. Instruments and techniques ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions ; 03. Hydrosphere::03.03. Physical::03.03.02. General circulation ; 03. Hydrosphere::03.03. Physical::03.03.03. Interannual-to-decadal ocean variability ; 03. Hydrosphere::03.03. Physical::03.03.05. Instruments and techniques ; 03. Hydrosphere::03.04. Chemical and biological::03.04.01. Biogeochemical cycles ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.04. Ecosystems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.08. Instruments and techniques ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.05. Geomagnetism::04.05.05. Main geomagnetic field ; 04. Solid Earth::04.05. Geomagnetism::04.05.08. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.03. Heat generation and transport ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.02. Seismological data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.02. Data dissemination::05.02.04. Hydrogeological data ; 05. General::05.08. Risk::05.08.01. Environmental risk ; 05. General::05.08. Risk::05.08.02. Hydrogeological risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    Wuppertal : Wuppertal Institute for Climate, Environment and Energy | Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie
    Publication Date: 2022-11-10
    Description: Objective of this study is to support the development of a Thematic Strategy for Sustainable Use and Management of Resources through the provision of background information, in particular "an estimate of materials and waste streams in the Community, including imports and exports" (Article 8 a 6th EAP) using the method of material flow accounting. It further presents first ideas on how the resource use pattern of the EU can be assessed with regards to priority setting for possible policy measures. By referring to the concept of Industrial Metabolism, resources are defined in a broad sense, embracing the source and sink function of the natural environment, i.e. the provision of raw materials and land, and the absorption of residual materials (waste and emissions). Environmental impacts are associated not only with the extraction, harvesting and catching of raw materials but also with the subsequent production, use and disposal of products and goods. It is the total of environmental impacts associated with the entire life cycle of raw materials which has to be considered. Three generic "management rules" for the sustainable use and management of renewable and non-renewable natural resources are presented and discussed which have been formulated by several political institutions based on scientific literature: 1. The use of renewable resources should not exceed their renewal and/or regeneration rates. 2. The use of non-renewable resources should not exceed the rate at which substitutes are developed (should be limited to levels at which they can either be replaced by physically or functionally equivalent renewable resources or at which consumption can be offset by increasing the productivity of renewable or non-renewable resources). 3. Outputs of substances to the environment (pollution) should not exceed the assimilative capacity of environmental media ("absorption capacities").
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie | Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie
    Publication Date: 2022-02-18
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: workingpaper , doc-type:workingPaper
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-02-18
    Description: It is now widely recognized that effective communication and demand-side policies for alternative energy require sound knowledge of preferences and determinants of demand of the public and consumers. To date, public attitudes towards new transport technologies have been studied under very different conceptual frameworks. This paper gives an overview of the various conceptual frameworks and methodologies used, where four main approaches can be distinguished: general attitudinal surveys, risk perception studies, non-market economic valuation studies, and other approaches such as those based on semiotic theory. We then review the findings of the recent literature on acceptance, attitudes and preferences for hydrogen and fuelcell end-use technologies, focusing on vehicles. These studies are then contrasted with related research into alternative fuel vehicles. The paper finally discusses the main trends in research and avenues for further work in this field. We recommend, among other things, the use of approaches that build knowledge and familiarity with the technology prior to the exploration of attitudes, and the set up of studies that take a whole-systems perspective of hydrogen technologies and that look at hydrogen in the context of other competing clean technologies.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-02-18
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie
    Publication Date: 2022-02-18
    Description: The energy potential of agricultural residues in Tanzania has so far not been evaluated and quantified sufficiently. Moreover, the scientific basis for estimations of the sustainable potential of wastes and residues is still very limited. This paper presents an attempt to evaluate the theoretical and technical potential of residues from the sisal sector in Tanzania with regards to energy recovery through anaerobic digestion. The characteristics and availability of sisal residues are defined and a set of sustainability indicators with particular focus on environmental and socio-economic criteria is applied. Our analysis shows that electricity generation with sisal residues can be sustainable and have positive effects on the sustainability of sisal production itself. All sisal residues combined have an annual maximum electricity potential of 102 GW h in 2009, corresponding to up to 18.6 MW of potential electric capacity installations. This estimated maximum potential is equivalent to about 3 % of the country's current power production. Utilizing these residues could contribute to meeting the growing electricity demand and offers an opportunity for decentralized electricity production in Tanzania.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-10-24
    Description: On the basis of a literature research, this subtask develops a conceptional framework for a common understanding of CE within the project team and for the following work packages and tasks. After a brief introduction into the objectives and the context of a circular economy, a more elaborated look into the necessity of an explicit understanding of CE, the objectives, the spatial perspective of CE and the specific challenges within the CICERONE context will be done, in order to develop a basis for a common understanding within the project context. Circular economy can and has to be understood as an (eco-)innovation agenda. Therefore, the paper investigates the role policy has to play to support innovation for a CE transition, for creating the framework conditions and why CE has also to be build from the ground up. Finally, the paper looks from two perspectives at emerging trends and business models in a CE to sketch next steps towards the transition in a selection of central sectors. Conclusions are drawn on the basis of the insights gained by the preceding chapters.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...