GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • IUGG Secretariat, CIRES Cooperative Institute for Research in Environmental Sciences, University of Colorado  (11)
  • AGU (American Geophysical Union)  (8)
  • GEOMAR Forschungszentrum für marine Geowissenschaften der Christian-Albrechts-Universität zu Kiel
  • 2005-2009  (12)
  • 2000-2004  (9)
Publikationsart
Sprache
Erscheinungszeitraum
Jahr
  • 1
    facet.materialart.
    Unbekannt
    IUGG Secretariat, CIRES Cooperative Institute for Research in Environmental Sciences, University of Colorado
    Publikationsdatum: 2020-02-12
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/other
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    IUGG Secretariat, CIRES Cooperative Institute for Research in Environmental Sciences, University of Colorado
    Publikationsdatum: 2020-02-12
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/other
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    IUGG Secretariat, CIRES Cooperative Institute for Research in Environmental Sciences, University of Colorado
    Publikationsdatum: 2020-02-12
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/other
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    IUGG Secretariat, CIRES Cooperative Institute for Research in Environmental Sciences, University of Colorado
    Publikationsdatum: 2020-02-12
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/other
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    facet.materialart.
    Unbekannt
    IUGG Secretariat, CIRES Cooperative Institute for Research in Environmental Sciences, University of Colorado
    Publikationsdatum: 2020-02-12
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/other
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    facet.materialart.
    Unbekannt
    IUGG Secretariat, CIRES Cooperative Institute for Research in Environmental Sciences, University of Colorado
    Publikationsdatum: 2020-02-12
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/other
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Biogeosciences, 114 . G00D03.
    Publikationsdatum: 2018-02-06
    Beschreibung: Lake Tahoe is an ultra-oligotrophic subalpine lake that is renowned for its clarity. The region experiences little cloud cover and is one of the most UV transparent lakes in the world. As such, it is an ideal environment to study the role of UV radiation in aquatic ecosystems. Long-term trends in Secchi depths showed that water transparency to visible light has decreased in recent decades, but limited data are available on the UV transparency of the lake. Here we examine how ultraviolet radiation varies relative to longer-wavelength photosynthetically active radiation (PAR, 400-700 nm, visible wavelengths) horizontally along inshore-offshore transects in the lake and vertically within the water column as well as temporally throughout 2007. UV transparency was more variable than PAR transparency horizontally across the lake and throughout the year. Seasonal patterns of Secchi transparency differed from both UV and PAR, indicating that different substances may be responsible for controlling transparency to UV, PAR, and Secchi. In surface waters, UVA (380 nm) often attenuated more slowly than PAR, a pattern visible in only exceptionally transparent waters with very low dissolved organic carbon. On many sampling dates, UV transparency decreased progressively with depth suggesting surface photobleaching, reductions in particulate matter, increasing chlorophyll a, or some combination of these increased during summer months. Combining these patterns of UV transparency with data on visible light provides a more comprehensive understanding of ecosystem structure, function, and effects of environmental change in highly transparent alpine and subalpine lakes such as Tahoe.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2018-02-06
    Beschreibung: During the SAMUM field campaign in southern Morocco in May and June 2006 density currents generated by evaporative cooling after convective precipitation were frequently observed at the Sahara side of the Atlas Mountain chain. The associated strong surface cold-air outflow during such events has been observed to lead to dust mobilization in the foothills. Here a regional model system is used to simulate a density current case on 3 June 2006 and the subsequent dust emission. The model studies are performed with different parameterization schemes for convection, and with different horizontal model grid resolutions to examine to which extent the model system can be used for reproducing dust emissions in this region. The effect of increasing the horizontal model grid resolution from 14 km to 2.8 km on the strength on the density currents and thus on dust emission is smaller than the differences due to different convection parameterization schemes in this case study. While the results in reproducing the observed density current at the Atlas Mountain varied with different convection parameterizations, the most realistic representation of the density current is obtained at 2.8 km grid resolution at which no parameterization of deep convection is needed.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Solid Earth, 113 (C7). C07007.
    Publikationsdatum: 2019-07-25
    Beschreibung: The main physical and biological processes that control the seasonal cycle of the plankton dynamics over the Western Black Sea were explored by means of a three‐dimensional, 7‐compartment, on‐line coupled biophysical model that was developed for this study. Adopting high frequency forcing in terms of air‐sea interaction and Danube river inputs, we performed a simulation of the coupled model during the 2002–2003 period. A series of 8‐day Chl‐a SeaWiFS images provided a validation tool that guided us, along with available in situ measurements, to the improvement of model parameterizations and the calibration of the biological parameters. The simulation of the seasonal phytoplankton variability over the entire Western Black Sea, extending from the highly eutrophic river influenced area to the open sea area, was a major challenge that made necessary the representation of both the spatial and time variability of several processes. Despite the model simplicity, the simulated Chl‐a patterns presented a good agreement as compared to the SeaWiFS and in situ data. During winter, phytoplankton in coastal areas was shown to be limited by light availability, primarily due to the increased particulate matter concentrations, as a result of resuspension from the sediment and the increased river loads. During summer, the primary production was mostly sustained by riverine nutrients and regeneration processes and thus was strongly linked to the evolution of the Danube plume. The limiting nutrients showed deviations from the observed concentrations, indicating the necessity for a more realistic phytoplankton growth model.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2019-09-23
    Beschreibung: A 2-year record of mixed layer measurements of CO2 partial pressure (pCO2), nitrate, and other physical, chemical, and biological parameters at a time series site in the northeast Atlantic Ocean (49N/16.5W) is presented. The data show average undersaturation of surface waters with respect to atmospheric CO2 levels by about 40 ± 15 matm, which gives rise to a perennial CO2 sink of 3.2 ± 1.3 mol m2 a1. The seasonal pCO2 cycle is characterized by a summer minimum (winter maximum), which is due to the dominance of biological forcing over physical forcing. Our data document a rapid transition from deep mixing to shallow summer stratification. At the onset of shallow stratification, up to one third of the mixed layer net community production during the productive season had already been accomplished. The combination of high prestratification productivity and rapid onset of tratification appears to have caused the observed particle flux peak early in the season. Mixed layer deepening during fall and winter reventilated CO2 from subsurface respiration of newly exported organic matter, thereby negating more than one third of the carbon drawdown by net community production in the mixed layer. Chemical signatures of both net community production and respiration are indicative of carbon overconsumption, the effects of which may be restricted, though, to the upper ocean. A comparison of the estimated net community production with satellite-based estimates of net primary production shows fundamental discrepancies in the timing of ocean productivity.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...