GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • Articles  (3)
  • Data
  • evolution  (2)
  • 01. Atmosphere::01.01. Atmosphere::01.01.05. Radiation  (1)
  • 05.03. Educational, History of Science, Public Issues
  • Small-scale Fisheries
  • 2010-2014  (3)
  • 1
    Publication Date: 2017-04-04
    Description: Biomass burning emissions factors are vital to quantifying trace gas release from vegetation fires. Here we evaluate emissions factors for a series of savannah fires in Kruger National Park (KNP), South Africa using ground-based open path Fourier transform infrared (FTIR) spectroscopy and an IR source separated by 150–250 m distance. Molecular abundances along the extended open path are retrieved using a spectral forward model coupled to a non-linear least squares fitting approach. We demonstrate derivation of trace gas column amounts for horizontal paths transecting the width of the advected plume, and find for example that CO mixing ratio changes of ~0.01 μmol mol−1 [10 ppbv] can be detected across the relatively long optical paths used here. Though FTIR spectroscopy can detect dozens of different chemical species present in vegetation fire smoke, we focus our analysis on five key combustion products released preferentially during the pyrolysis (CH2O), flaming (CO2) and smoldering (CO, CH4, NH3) processes. We demonstrate that well constrained emissions ratios for these gases to both CO2 and CO can be derived for the backfire, headfire and residual smouldering combustion (RSC) stages of these savannah fires, from which stage-specific emission factors can then be calculated. Headfires and backfires often show similar emission ratios and emission factors, but those of the RSC stage can differ substantially. The timing of each fire stage was identified via airborne optical and thermal IR imagery and ground-observer reports, with the airborne IR imagery also used to derive estimates of fire radiative energy (FRE), allowing the relative amount of fuel burned in each stage to be calculated and "fire averaged" emission ratios and emission factors to be determined. These "fire averaged" metrics are dominated by the headfire contribution, since the FRE data indicate that the vast majority of the fuel is burned in this stage. Our fire averaged emission ratios and factors for CO2 and CH4 agree well with those from prior studies conducted in the same area using e.g. airborne plume sampling. We also concur with past suggestions that emission factors for formaldehyde in this environment appear substantially underestimated in widely used databases, but see no evidence to support suggestions by Sinha et al. (2003) of a major overestimation in the emission factor of ammonia in works such as Andreae and Merlet (2001) and Akagi et al. (2011). We also measure somewhat higher CO and NH3 emission ratios and factors than are usually reported for this environment, which is interpreted to result from the OP-FTIR ground-based technique sampling a greater proportion of smoke from smouldering processes than is generally the case with methods such as airborne sampling. Finally, our results suggest that the contribution of burning animal (elephant) dung can be a significant factor in the emissions characteristics of certain KNP fires, and that the ability of remotely sensed fire temperatures to provide information useful in tailoring modified combustion efficiency (MCE) and emissions factor estimates maybe rather limited, at least until the generally available precision of such temperature estimates can be substantially improved. One limitation of the OP-FTIR method is its ability to sample only near-ground level smoke, which may limit application at more intense fires where the majority of smoke is released into a vertically rising convection column. Nevertheless, even in such cases the method potentially enables a much better assessment of the emissions contribution of the RSC stage than is typically conducted currently.
    Description: Published
    Description: 11591-11615
    Description: 1.10. TTC - Telerilevamento
    Description: JCR Journal
    Description: open
    Keywords: X-ray computed microtomography ; preferred orientation ; texture analysis ; volcanic scoria ; synchrotron X-rays ; pumice ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.05. Radiation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-01-12
    Description: During surveys of dying vegetation in natural ecosystems and associated waterways in Australia many new taxa have been identified from Phytophthora ITS Clade 6. For representative isolates, the region spanning the internal transcribed spacer region of the ribosomal DNA, the nuclear gene encoding heat shock protein 90 and the mitochondrial cox1 gene were PCR amplified and sequenced. Based on phylogenetic analysis and morphological and physiological comparison, four species and one informally designated taxon have been described; Phytophthora gibbosa, P. gregata, P. litoralis, P. thermophila and P. taxon paludosa. Phytophthora gibbosa, P. gregata and P. taxon paludosa form a new cluster and share a common ancestor; they are homothallic and generally associated with dying vegetation in swampy or water-logged areas. Phytophthora thermophila and P. litoralis are sister species to each other and more distantly to P. gonapodyides. Both new species are common in waterways and cause scattered mortality within native vegetation. They are self-sterile and appear well adapted for survival in an aquatic environment and inundated soils, filling the niche occupied by P. gonapodyides and P. taxon salixsoil in the northern hemisphere. Currently the origin of these new taxa, their pathogenicity and their role in natural ecosystems are unknown. Following the precautionary principle, they should be regarded as a potential threat to native ecosystems and managed to minimise their further spread.
    Keywords: Aquatic habitat ; breeding systems ; evolution ; phylogeny ; radiation ; sterility ; survival
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-01-12
    Description: The existence of multiple independently derived populations in landlocked marine lakes provides an opportunity for fundamental research into the role of isolation in population divergence and speciation in marine taxa. Marine lakes are landlocked water bodies that maintain a marine character through narrow submarine connections to the sea and could be regarded as the marine equivalents of terrestrial islands. The sponge Suberites diversicolor (Porifera: Demospongiae: Suberitidae) is typical of marine lake habitats in the Indo-Australian Archipelago. Four molecular markers (two mitochondrial and two nuclear) were employed to study genetic structure of populations within and between marine lakes in Indonesia and three coastal locations in Indonesia, Singapore and Australia. Within populations of S. diversicolor two strongly divergent lineages (A & B) (COI: p = 0.4% and ITS: p = 7.3%) were found, that may constitute cryptic species. Lineage A only occurred in Kakaban lake (East Kalimantan), while lineage B was present in all sampled populations. Within lineage B, we found low levels of genetic diversity in lakes, though there was spatial genetic population structuring. The Australian population is genetically differentiated from the Indonesian populations. Within Indonesia we did not record an East-West barrier, which has frequently been reported for other marine invertebrates. Kakaban lake is the largest and most isolated marine lake in Indonesia and contains the highest genetic diversity with genetic variants not observed elsewhere. Kakaban lake may be an area where multiple putative refugia populations have come into secondary contact, resulting in high levels of genetic diversity and a high number of endemic species.
    Keywords: Suberites diversicolor ; Indo-Australian Archipelago ; marine lakes ; evolution
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...