GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mice  (1,090)
  • Forschungsbericht
  • Nature Publishing Group (NPG)  (1,090)
  • 2010-2014  (1,090)
  • 1
    Publication Date: 2014-02-04
    Description: The precision of skilled forelimb movement has long been presumed to rely on rapid feedback corrections triggered by internally directed copies of outgoing motor commands, but the functional relevance of inferred internal copy circuits has remained unclear. One class of spinal interneurons implicated in the control of mammalian forelimb movement, cervical propriospinal neurons (PNs), has the potential to convey an internal copy of premotor signals through dual innervation of forelimb-innervating motor neurons and precerebellar neurons of the lateral reticular nucleus. Here we examine whether the PN internal copy pathway functions in the control of goal-directed reaching. In mice, PNs include a genetically accessible subpopulation of cervical V2a interneurons, and their targeted ablation perturbs reaching while leaving intact other elements of forelimb movement. Moreover, optogenetic activation of the PN internal copy branch recruits a rapid cerebellar feedback loop that modulates forelimb motor neuron activity and severely disrupts reaching kinematics. Our findings implicate V2a PNs as the focus of an internal copy pathway assigned to the rapid updating of motor output during reaching behaviour.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4230338/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4230338/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Azim, Eiman -- Jiang, Juan -- Alstermark, Bror -- Jessell, Thomas M -- NS033245/NS/NINDS NIH HHS/ -- R01 NS033245/NS/NINDS NIH HHS/ -- R01 NS080932/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Apr 17;508(7496):357-63. doi: 10.1038/nature13021. Epub 2014 Feb 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Departments of Neuroscience and Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA. ; Department of Integrative Medical Biology, Section of Physiology, Umea University, Umea, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24487617" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cerebellum/physiology ; Feedback, Physiological ; Female ; Forelimb/*innervation/*physiology ; Interneurons/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Models, Neurological ; Motor Neurons/*physiology ; Motor Skills/*physiology ; Movement/*physiology ; *Neural Pathways ; Optogenetics ; Psychomotor Performance/physiology ; Spinal Cord/*cytology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-09-19
    Description: Given the global burden of diarrhoeal diseases, it is important to understand how members of the gut microbiota affect the risk for, course of, and recovery from disease in children and adults. The acute, voluminous diarrhoea caused by Vibrio cholerae represents a dramatic example of enteropathogen invasion and gut microbial community disruption. Here we conduct a detailed time-series metagenomic study of faecal microbiota collected during the acute diarrhoeal and recovery phases of cholera in a cohort of Bangladeshi adults living in an area with a high burden of disease. We find that recovery is characterized by a pattern of accumulation of bacterial taxa that shows similarities to the pattern of assembly/maturation of the gut microbiota in healthy Bangladeshi children. To define the underlying mechanisms, we introduce into gnotobiotic mice an artificial community composed of human gut bacterial species that directly correlate with recovery from cholera in adults and are indicative of normal microbiota maturation in healthy Bangladeshi children. One of the species, Ruminococcus obeum, exhibits consistent increases in its relative abundance upon V. cholerae infection of the mice. Follow-up analyses, including mono- and co-colonization studies, establish that R. obeum restricts V. cholerae colonization, that R. obeum luxS (autoinducer-2 (AI-2) synthase) expression and AI-2 production increase significantly with V. cholerae invasion, and that R. obeum AI-2 causes quorum-sensing-mediated repression of several V. cholerae colonization factors. Co-colonization with V. cholerae mutants discloses that R. obeum AI-2 reduces Vibrio colonization/pathogenicity through a novel pathway that does not depend on the V. cholerae AI-2 sensor, LuxP. The approach described can be used to mine the gut microbiota of Bangladeshi or other populations for members that use autoinducers and/or other mechanisms to limit colonization with V. cholerae, or conceivably other enteropathogens.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4353411/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4353411/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hsiao, Ansel -- Ahmed, A M Shamsir -- Subramanian, Sathish -- Griffin, Nicholas W -- Drewry, Lisa L -- Petri, William A Jr -- Haque, Rashidul -- Ahmed, Tahmeed -- Gordon, Jeffrey I -- AI 43596/AI/NIAID NIH HHS/ -- R01 AI043596/AI/NIAID NIH HHS/ -- R37 DK030292/DK/NIDDK NIH HHS/ -- T32AI007172/AI/NIAID NIH HHS/ -- T32DK077653/DK/NIDDK NIH HHS/ -- England -- Nature. 2014 Nov 20;515(7527):423-6. doi: 10.1038/nature13738. Epub 2014 Sep 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, Missouri 63108, USA. ; 1] School of Population Health, The University of Queensland, Brisbane, Queensland 4006, Australia [2] Centre for Nutrition and Food Security, International Centre for Diarrhoeal Disease Research, Dhaka 1212, Bangladesh. ; 1] Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA [2] Department of Microbiology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA [3] Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA. ; Centre for Nutrition and Food Security, International Centre for Diarrhoeal Disease Research, Dhaka 1212, Bangladesh.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25231861" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bangladesh ; Child ; Cholera/*microbiology ; Cohort Studies ; Diarrhea/microbiology ; Feces/microbiology ; Gene Expression Regulation, Bacterial ; Germ-Free Life ; Health ; Humans ; Intestines/*microbiology ; Male ; Metagenome/genetics ; Mice ; Microbiota/genetics/*physiology ; Quorum Sensing/physiology ; Ruminococcus/isolation & purification/*physiology ; Vibrio cholerae/genetics/isolation & purification/*pathogenicity/*physiology ; Virulence/genetics ; Virulence Factors/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-07-22
    Description: Mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 are among the most common genetic alterations in intrahepatic cholangiocarcinoma (IHCC), a deadly liver cancer. Mutant IDH proteins in IHCC and other malignancies acquire an abnormal enzymatic activity allowing them to convert alpha-ketoglutarate (alphaKG) to 2-hydroxyglutarate (2HG), which inhibits the activity of multiple alphaKG-dependent dioxygenases, and results in alterations in cell differentiation, survival, and extracellular matrix maturation. However, the molecular pathways by which IDH mutations lead to tumour formation remain unclear. Here we show that mutant IDH blocks liver progenitor cells from undergoing hepatocyte differentiation through the production of 2HG and suppression of HNF-4alpha, a master regulator of hepatocyte identity and quiescence. Correspondingly, genetically engineered mouse models expressing mutant IDH in the adult liver show an aberrant response to hepatic injury, characterized by HNF-4alpha silencing, impaired hepatocyte differentiation, and markedly elevated levels of cell proliferation. Moreover, IDH and Kras mutations, genetic alterations that co-exist in a subset of human IHCCs, cooperate to drive the expansion of liver progenitor cells, development of premalignant biliary lesions, and progression to metastatic IHCC. These studies provide a functional link between IDH mutations, hepatic cell fate, and IHCC pathogenesis, and present a novel genetically engineered mouse model of IDH-driven malignancy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4499230/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4499230/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Saha, Supriya K -- Parachoniak, Christine A -- Ghanta, Krishna S -- Fitamant, Julien -- Ross, Kenneth N -- Najem, Mortada S -- Gurumurthy, Sushma -- Akbay, Esra A -- Sia, Daniela -- Cornella, Helena -- Miltiadous, Oriana -- Walesky, Chad -- Deshpande, Vikram -- Zhu, Andrew X -- Hezel, Aram F -- Yen, Katharine E -- Straley, Kimberly S -- Travins, Jeremy -- Popovici-Muller, Janeta -- Gliser, Camelia -- Ferrone, Cristina R -- Apte, Udayan -- Llovet, Josep M -- Wong, Kwok-Kin -- Ramaswamy, Sridhar -- Bardeesy, Nabeel -- P50 CA127003/CA/NCI NIH HHS/ -- P50CA1270003/CA/NCI NIH HHS/ -- R01 CA136567/CA/NCI NIH HHS/ -- R01 DK098414/DK/NIDDK NIH HHS/ -- R01CA136567-02/CA/NCI NIH HHS/ -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2014 Sep 4;513(7516):110-4. doi: 10.1038/nature13441. Epub 2014 Jul 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts 02114, USA [2]. ; Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts 02114, USA. ; Department of Medical Oncology, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] HCC Translational Research Laboratory, Barcelona-Clinic Liver Cancer Group, Liver Unit, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Catalonia 08036, Spain [2] Mount Sinai Liver Cancer Program, Division of Liver Diseases, Dept of Medicine. Icahn School of Medicine at Mount Sinai, New York 10029, USA [3] Gastrointestinal Surgery and Liver Transplantation Unit, National Cancer Institute, and Department of Experimental Oncology, Milan 20133, Italy. ; HCC Translational Research Laboratory, Barcelona-Clinic Liver Cancer Group, Liver Unit, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Catalonia 08036, Spain. ; Mount Sinai Liver Cancer Program, Division of Liver Diseases, Dept of Medicine. Icahn School of Medicine at Mount Sinai, New York 10029, USA. ; Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA. ; University of Rochester Medical Center, Rochester, New York 14642, USA. ; Agios Pharmaceuticals, Cambridge, Massachusetts 02139, USA. ; 1] HCC Translational Research Laboratory, Barcelona-Clinic Liver Cancer Group, Liver Unit, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Catalonia 08036, Spain [2] Mount Sinai Liver Cancer Program, Division of Liver Diseases, Dept of Medicine. Icahn School of Medicine at Mount Sinai, New York 10029, USA [3] Institucio Catalana de Recerca i Estudis Avancats, Barcelona, Catalonia 08010, Spain [4] University of Barcelona, Catalonia 08036, Spain. ; 1] Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts 02114, USA [2] Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043045" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bile Duct Neoplasms/enzymology/genetics/*pathology ; Bile Ducts, Intrahepatic/enzymology/pathology ; Cell Differentiation/*genetics ; Cell Division/genetics ; Cell Lineage/genetics ; Cholangiocarcinoma/enzymology/genetics/*pathology ; Disease Models, Animal ; Female ; Glutarates/metabolism ; Hepatocyte Nuclear Factor 4/*antagonists & ; inhibitors/biosynthesis/genetics/metabolism ; Hepatocytes/enzymology/metabolism/*pathology ; Humans ; Isocitrate Dehydrogenase/*genetics/metabolism ; Male ; Mice ; Mice, Transgenic ; Mutant Proteins/genetics/*metabolism ; Mutation/genetics ; Neoplasm Metastasis ; Proto-Oncogene Proteins/genetics/metabolism ; Stem Cells/pathology ; ras Proteins/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-04-18
    Description: Reactive oxygen species (ROS) produced by phagocytes are essential for host defence against bacterial and fungal infections. Individuals with defective ROS production machinery develop chronic granulomatous disease. Conversely, excessive ROS can cause collateral tissue damage during inflammatory processes and therefore needs to be tightly regulated. Here we describe a protein, we termed negative regulator of ROS (NRROS), which limits ROS generation by phagocytes during inflammatory responses. NRROS expression in phagocytes can be repressed by inflammatory signals. NRROS-deficient phagocytes produce increased ROS upon inflammatory challenges, and mice lacking NRROS in their phagocytes show enhanced bactericidal activity against Escherichia coli and Listeria monocytogenes. Conversely, these mice develop severe experimental autoimmune encephalomyelitis owing to oxidative tissue damage in the central nervous system. Mechanistically, NRROS is localized to the endoplasmic reticulum, where it directly interacts with nascent NOX2 (also known as gp91(phox) and encoded by Cybb) monomer, one of the membrane-bound subunits of the NADPH oxidase complex, and facilitates the degradation of NOX2 through the endoplasmic-reticulum-associated degradation pathway. Thus, NRROS provides a hitherto undefined mechanism for regulating ROS production--one that enables phagocytes to produce higher amounts of ROS, if required to control invading pathogens, while minimizing unwanted collateral tissue damage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Noubade, Rajkumar -- Wong, Kit -- Ota, Naruhisa -- Rutz, Sascha -- Eidenschenk, Celine -- Valdez, Patricia A -- Ding, Jiabing -- Peng, Ivan -- Sebrell, Andrew -- Caplazi, Patrick -- DeVoss, Jason -- Soriano, Robert H -- Sai, Tao -- Lu, Rongze -- Modrusan, Zora -- Hackney, Jason -- Ouyang, Wenjun -- England -- Nature. 2014 May 8;509(7499):235-9. doi: 10.1038/nature13152. Epub 2014 Apr 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Immunology, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, USA [2] Flexus Biosciences, 75 Shoreway Road, Suite D, San Carlos, California 94070, USA (R.N.); American Society for Biochemistry and Molecular Biology, 11200 Rockville Pike, Suite 302, Rockville, Maryland 20852, USA (P.A.V.). ; Department of Immunology, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Pathology, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Molecular Biology, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Bioinformatics, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24739962" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autoimmunity/genetics ; Bone Marrow Cells/cytology ; Central Nervous System/metabolism/pathology ; Encephalomyelitis, Autoimmune, Experimental/*immunology/*metabolism/pathology ; Endoplasmic Reticulum/enzymology/metabolism ; Escherichia coli/*immunology ; Female ; Inflammation/immunology/metabolism/pathology ; Listeria monocytogenes/*immunology ; Macrophages/cytology/enzymology/immunology/metabolism ; Male ; Mice ; NADPH Oxidase/metabolism ; Oxidation-Reduction ; Oxidative Stress ; Phagocytes/cytology/immunology/metabolism ; Proteins/genetics/*metabolism ; Reactive Oxygen Species/*antagonists & inhibitors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-04-04
    Description: Activated RAS GTPase signalling is a critical driver of oncogenic transformation and malignant disease. Cellular models of RAS-dependent cancers have been used to identify experimental small molecules, such as SCH51344, but their molecular mechanism of action remains generally unknown. Here, using a chemical proteomic approach, we identify the target of SCH51344 as the human mutT homologue MTH1 (also known as NUDT1), a nucleotide pool sanitizing enzyme. Loss-of-function of MTH1 impaired growth of KRAS tumour cells, whereas MTH1 overexpression mitigated sensitivity towards SCH51344. Searching for more drug-like inhibitors, we identified the kinase inhibitor crizotinib as a nanomolar suppressor of MTH1 activity. Surprisingly, the clinically used (R)-enantiomer of the drug was inactive, whereas the (S)-enantiomer selectively inhibited MTH1 catalytic activity. Enzymatic assays, chemical proteomic profiling, kinome-wide activity surveys and MTH1 co-crystal structures of both enantiomers provide a rationale for this remarkable stereospecificity. Disruption of nucleotide pool homeostasis via MTH1 inhibition by (S)-crizotinib induced an increase in DNA single-strand breaks, activated DNA repair in human colon carcinoma cells, and effectively suppressed tumour growth in animal models. Our results propose (S)-crizotinib as an attractive chemical entity for further pre-clinical evaluation, and small-molecule inhibitors of MTH1 in general as a promising novel class of anticancer agents.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4150021/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4150021/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huber, Kilian V M -- Salah, Eidarus -- Radic, Branka -- Gridling, Manuela -- Elkins, Jonathan M -- Stukalov, Alexey -- Jemth, Ann-Sofie -- Gokturk, Camilla -- Sanjiv, Kumar -- Stromberg, Kia -- Pham, Therese -- Berglund, Ulrika Warpman -- Colinge, Jacques -- Bennett, Keiryn L -- Loizou, Joanna I -- Helleday, Thomas -- Knapp, Stefan -- Superti-Furga, Giulio -- 092809/Wellcome Trust/United Kingdom -- 092809/Z/10/Z/Wellcome Trust/United Kingdom -- F 4711/Austrian Science Fund FWF/Austria -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2014 Apr 10;508(7495):222-7. doi: 10.1038/nature13194. Epub 2014 Apr 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria. ; Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK. ; Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17121 Stockholm, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24695225" target="_blank"〉PubMed〈/a〉
    Keywords: Aminoquinolines/pharmacology ; Animals ; Antineoplastic Agents/chemistry/*pharmacology ; Colonic Neoplasms/drug therapy/genetics/pathology ; Crystallization ; DNA Breaks, Single-Stranded/drug effects ; DNA Repair ; DNA Repair Enzymes/*antagonists & inhibitors/biosynthesis/chemistry/*metabolism ; Disease Models, Animal ; Female ; Homeostasis/drug effects ; Humans ; Mice ; Mice, SCID ; Models, Molecular ; Nucleotides/metabolism ; Phosphoric Monoester Hydrolases/*antagonists & ; inhibitors/biosynthesis/chemistry/*metabolism ; Protein Conformation ; Protein Kinase Inhibitors/chemistry/*pharmacology ; Proteomics ; Proto-Oncogene Proteins/genetics ; Pyrazoles/chemistry/*pharmacology ; Pyridines/chemistry/*pharmacology ; Substrate Specificity ; Xenograft Model Antitumor Assays ; ras Proteins/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-10-03
    Description: The monarch butterfly, Danaus plexippus, is famous for its spectacular annual migration across North America, recent worldwide dispersal, and orange warning colouration. Despite decades of study and broad public interest, we know little about the genetic basis of these hallmark traits. Here we uncover the history of the monarch's evolutionary origin and global dispersal, characterize the genes and pathways associated with migratory behaviour, and identify the discrete genetic basis of warning colouration by sequencing 101 Danaus genomes from around the globe. The results rewrite our understanding of this classic system, showing that D. plexippus was ancestrally migratory and dispersed out of North America to occupy its broad distribution. We find the strongest signatures of selection associated with migration centre on flight muscle function, resulting in greater flight efficiency among migratory monarchs, and that variation in monarch warning colouration is controlled by a single myosin gene not previously implicated in insect pigmentation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4331202/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4331202/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhan, Shuai -- Zhang, Wei -- Niitepold, Kristjan -- Hsu, Jeremy -- Haeger, Juan Fernandez -- Zalucki, Myron P -- Altizer, Sonia -- de Roode, Jacobus C -- Reppert, Steven M -- Kronforst, Marcus R -- GM086794-02S1/GM/NIGMS NIH HHS/ -- R01 GM086794/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Oct 16;514(7522):317-21. doi: 10.1038/nature13812. Epub 2014 Oct 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China [2] Department of Ecology &Evolution, University of Chicago, Chicago, Illinois 60637, USA [3] Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA. ; Department of Ecology &Evolution, University of Chicago, Chicago, Illinois 60637, USA. ; 1] Department of Biology, Stanford University, Stanford, California 94305, USA [2] Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland. ; Department of Biology, Stanford University, Stanford, California 94305, USA. ; Departamento de Botanica, Ecologia y Fisiologia Vegetal, Universidad de Cordoba, 14071 Cordoba, Spain. ; School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia. ; Odum School of Ecology, University of Georgia, Athens, Georgia 30602, USA. ; Department of Biology, Emory University, Atlanta, Georgia 30322, USA. ; Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25274300" target="_blank"〉PubMed〈/a〉
    Keywords: *Animal Migration ; Animals ; Biological Evolution ; Butterflies/*genetics/*physiology ; Collagen Type IV/metabolism ; Female ; Flight, Animal ; Male ; Mice ; Muscles/physiology ; Myosin Type V/genetics/metabolism ; North America ; Phenotype ; Pigmentation/*genetics/*physiology ; Selection, Genetic ; Wings, Animal/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-07-18
    Description: Generating engraftable human haematopoietic cells from autologous tissues is a potential route to new therapies for blood diseases. However, directed differentiation of pluripotent stem cells yields haematopoietic cells that engraft poorly. Here, we have devised a method to phenocopy the vascular-niche microenvironment of haemogenic cells, thereby enabling reprogramming of human endothelial cells into engraftable haematopoietic cells without transition through a pluripotent intermediate. Highly purified non-haemogenic human umbilical vein endothelial cells or adult dermal microvascular endothelial cells were transduced with the transcription factors FOSB, GFI1, RUNX1 and SPI1 (hereafter referred to as FGRS), and then propagated on serum-free instructive vascular niche monolayers to induce outgrowth of haematopoietic colonies containing cells with functional and immunophenotypic features of multipotent progenitor cells (MPPs). These endothelial cells that have been reprogrammed into human MPPs (rEC-hMPPs) acquire colony-forming-cell potential and durably engraft into immune-deficient mice after primary and secondary transplantation, producing long-term rEC-hMPP-derived myeloid (granulocytic/monocytic, erythroid, megakaryocytic) and lymphoid (natural killer and B cell) progenies. Conditional expression of FGRS transgenes, combined with vascular induction, activates endogenous FGRS genes, endowing rEC-hMPPs with a transcriptional and functional profile similar to that of self-renewing MPPs. Our approach underscores the role of inductive cues from the vascular niche in coordinating and sustaining haematopoietic specification and may prove useful for engineering autologous haematopoietic grafts to treat inherited and acquired blood disorders.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4159670/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4159670/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sandler, Vladislav M -- Lis, Raphael -- Liu, Ying -- Kedem, Alon -- James, Daylon -- Elemento, Olivier -- Butler, Jason M -- Scandura, Joseph M -- Rafii, Shahin -- CA159175/CA/NCI NIH HHS/ -- CA163167/CA/NCI NIH HHS/ -- HL055748/HL/NHLBI NIH HHS/ -- HL119872/HL/NHLBI NIH HHS/ -- R01 DK095039/DK/NIDDK NIH HHS/ -- R01 HL097797/HL/NHLBI NIH HHS/ -- R01 HL115128/HL/NHLBI NIH HHS/ -- R01 HL119872/HL/NHLBI NIH HHS/ -- R01DK095039/DK/NIDDK NIH HHS/ -- R01HL097797/HL/NHLBI NIH HHS/ -- R01HL119872/HL/NHLBI NIH HHS/ -- U01 HL099997/HL/NHLBI NIH HHS/ -- U01-HL099997/HL/NHLBI NIH HHS/ -- U54 CA163167/CA/NCI NIH HHS/ -- U54CA163167/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Jul 17;511(7509):312-8. doi: 10.1038/nature13547. Epub 2014 Jul 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ansary Stem Cell Institute, Department of Genetic Medicine, and Howard Hughes Medical Institute, Weill Cornell Medical College, New York, New York 10065, USA. ; 1] Ansary Stem Cell Institute, Department of Genetic Medicine, and Howard Hughes Medical Institute, Weill Cornell Medical College, New York, New York 10065, USA [2] Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical College, New York, New York 10065, USA. ; HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York 10065, USA. ; Department of Medicine, Hematology-Oncology, Weill Cornell Medical College and the New York Presbyterian Hospital, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25030167" target="_blank"〉PubMed〈/a〉
    Keywords: Adult Stem Cells/cytology/metabolism/transplantation ; Animals ; Aorta ; Cell Lineage ; *Cellular Microenvironment ; *Cellular Reprogramming ; Endothelial Cells/*cytology/metabolism ; Female ; Gene Expression Regulation ; Gonads ; Hematopoiesis ; Hematopoietic Stem Cell Transplantation ; Hematopoietic Stem Cells/*cytology/metabolism ; Humans ; Lymphocytes/cytology ; Mesonephros ; Mice ; Multipotent Stem Cells/*cytology/metabolism/transplantation ; Myeloid Cells/cytology ; Pluripotent Stem Cells ; Time Factors ; Transcription Factors/genetics/metabolism ; Transgenes/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-05-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Friedman, Jeffrey -- England -- Nature. 2014 May 29;509(7502):564. doi: 10.1038/509564a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Rockefeller University in New York City. He was a co-recipient with Douglas Coleman of the 2010 Albert Lasker Basic Medical Research Award for the discovery of leptin.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24870535" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue/metabolism ; Animals ; Appetite/*genetics ; Biochemistry/*history ; Canada ; History, 20th Century ; History, 21st Century ; Leptin/genetics/metabolism ; Mice ; Mice, Obese/genetics ; Obesity/*genetics ; *Satiety Response ; United States
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-08-01
    Description: Self-renewal is the hallmark feature both of normal stem cells and cancer stem cells. Since the regenerative capacity of normal haematopoietic stem cells is limited by the accumulation of reactive oxygen species and DNA double-strand breaks, we speculated that DNA damage might also constrain leukaemic self-renewal and malignant haematopoiesis. Here we show that the histone methyl-transferase MLL4, a suppressor of B-cell lymphoma, is required for stem-cell activity and an aggressive form of acute myeloid leukaemia harbouring the MLL-AF9 oncogene. Deletion of MLL4 enhances myelopoiesis and myeloid differentiation of leukaemic blasts, which protects mice from death related to acute myeloid leukaemia. MLL4 exerts its function by regulating transcriptional programs associated with the antioxidant response. Addition of reactive oxygen species scavengers or ectopic expression of FOXO3 protects MLL4(-/-) MLL-AF9 cells from DNA damage and inhibits myeloid maturation. Similar to MLL4 deficiency, loss of ATM or BRCA1 sensitizes transformed cells to differentiation, suggesting that myeloid differentiation is promoted by loss of genome integrity. Indeed, we show that restriction-enzyme-induced double-strand breaks are sufficient to induce differentiation of MLL-AF9 blasts, which requires cyclin-dependent kinase inhibitor p21(Cip1) (Cdkn1a) activity. In summary, we have uncovered an unexpected tumour-promoting role of genome guardians in enforcing the oncogene-induced differentiation blockade in acute myeloid leukaemia.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410707/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410707/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Santos, Margarida A -- Faryabi, Robert B -- Ergen, Aysegul V -- Day, Amanda M -- Malhowski, Amy -- Canela, Andres -- Onozawa, Masahiro -- Lee, Ji-Eun -- Callen, Elsa -- Gutierrez-Martinez, Paula -- Chen, Hua-Tang -- Wong, Nancy -- Finkel, Nadia -- Deshpande, Aniruddha -- Sharrow, Susan -- Rossi, Derrick J -- Ito, Keisuke -- Ge, Kai -- Aplan, Peter D -- Armstrong, Scott A -- Nussenzweig, Andre -- CA140575/CA/NCI NIH HHS/ -- CA66996/CA/NCI NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- R00 CA139009/CA/NCI NIH HHS/ -- R01 DK098263/DK/NIDDK NIH HHS/ -- R01 DK100689/DK/NIDDK NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2014 Oct 2;514(7520):107-11. doi: 10.1038/nature13483. Epub 2014 Jul 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. ; 1] Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA [2]. ; The Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; 1] Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA [2] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA. ; Human Oncology and Pathogenesis Program and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA. ; Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Departments of Cell Biology and Medicine, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25079327" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ataxia Telangiectasia Mutated Proteins/metabolism ; BRCA1 Protein/genetics/metabolism ; Cell Transformation, Neoplastic ; Cyclin-Dependent Kinase Inhibitor p21/metabolism ; DNA Breaks, Double-Stranded ; *DNA Damage ; DNA Repair ; Female ; Gene Expression Regulation, Neoplastic ; Genes, BRCA1 ; Hematopoietic Stem Cells/cytology/metabolism/pathology ; Histone-Lysine N-Methyltransferase/deficiency/genetics/metabolism ; Leukemia, Myeloid, Acute/*enzymology/*pathology ; Male ; Mice ; *Myelopoiesis ; Oncogene Proteins, Fusion/genetics/metabolism ; Reactive Oxygen Species/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-03-29
    Description: Human neurons are functional over an entire lifetime, yet the mechanisms that preserve function and protect against neurodegeneration during ageing are unknown. Here we show that induction of the repressor element 1-silencing transcription factor (REST; also known as neuron-restrictive silencer factor, NRSF) is a universal feature of normal ageing in human cortical and hippocampal neurons. REST is lost, however, in mild cognitive impairment and Alzheimer's disease. Chromatin immunoprecipitation with deep sequencing and expression analysis show that REST represses genes that promote cell death and Alzheimer's disease pathology, and induces the expression of stress response genes. Moreover, REST potently protects neurons from oxidative stress and amyloid beta-protein toxicity, and conditional deletion of REST in the mouse brain leads to age-related neurodegeneration. A functional orthologue of REST, Caenorhabditis elegans SPR-4, also protects against oxidative stress and amyloid beta-protein toxicity. During normal ageing, REST is induced in part by cell non-autonomous Wnt signalling. However, in Alzheimer's disease, frontotemporal dementia and dementia with Lewy bodies, REST is lost from the nucleus and appears in autophagosomes together with pathological misfolded proteins. Finally, REST levels during ageing are closely correlated with cognitive preservation and longevity. Thus, the activation state of REST may distinguish neuroprotection from neurodegeneration in the ageing brain.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4110979/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4110979/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lu, Tao -- Aron, Liviu -- Zullo, Joseph -- Pan, Ying -- Kim, Haeyoung -- Chen, Yiwen -- Yang, Tun-Hsiang -- Kim, Hyun-Min -- Drake, Derek -- Liu, X Shirley -- Bennett, David A -- Colaiacovo, Monica P -- Yankner, Bruce A -- DP1 AG044161/AG/NIA NIH HHS/ -- DP1 OD006849/OD/NIH HHS/ -- DP1OD006849/OD/NIH HHS/ -- P01 AG027916/AG/NIA NIH HHS/ -- P01AG27916/AG/NIA NIH HHS/ -- P30 AG010161/AG/NIA NIH HHS/ -- P30AG10161/AG/NIA NIH HHS/ -- R01 AG015819/AG/NIA NIH HHS/ -- R01 AG017917/AG/NIA NIH HHS/ -- R01 AG026651/AG/NIA NIH HHS/ -- R01 GM105853/GM/NIGMS NIH HHS/ -- R01AG15819/AG/NIA NIH HHS/ -- R01AG17917/AG/NIA NIH HHS/ -- R01AG26651/AG/NIA NIH HHS/ -- R01GM072551/GM/NIGMS NIH HHS/ -- T32 AG000222/AG/NIA NIH HHS/ -- England -- Nature. 2014 Mar 27;507(7493):448-54. doi: 10.1038/nature13163. Epub 2014 Mar 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Department of Biostatistics and Computational Biology, Dana-Faber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts 02115, USA. ; Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois 60612, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24670762" target="_blank"〉PubMed〈/a〉
    Keywords: Aged ; Aged, 80 and over ; Aging/genetics/*metabolism/pathology ; Alzheimer Disease/genetics/*metabolism/pathology ; Amyloid beta-Peptides/antagonists & inhibitors/toxicity ; Animals ; Autophagy ; Brain/cytology/metabolism/pathology ; Caenorhabditis elegans Proteins/metabolism ; Cell Death/genetics ; Cell Nucleus/metabolism ; Chromatin Immunoprecipitation ; Cognition ; DNA-Binding Proteins/metabolism ; Down-Regulation ; Frontotemporal Dementia/metabolism/pathology ; Gene Expression Regulation ; Humans ; Lewy Body Disease/metabolism/pathology ; Longevity ; Mice ; Mild Cognitive Impairment/metabolism ; Neurons/cytology/metabolism/pathology ; Neuroprotective Agents/metabolism ; *Oxidative Stress/genetics/physiology ; Phagosomes ; Repressor Proteins/deficiency/genetics/*metabolism ; Transcription Factors/metabolism ; Up-Regulation ; Wnt Signaling Pathway ; Young Adult
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...