GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • Articles  (80)
  • Springer  (70)
  • Elsevier  (6)
  • ELSEVIER SCIENCE BV  (4)
  • 2010-2014  (80)
Document type
Keywords
Years
Year
  • 11
    Publication Date: 2011-09-13
    Description:    The condition of many wetlands across Australia has deteriorated due to increased water regulation and the expansion and intensification of agriculture and increased urban and industrial expansion. Despite this situation, a comprehensive overview of the distribution and condition of wetlands across Australia is not available. Regional analyses exist and several exemplary mapping and monitoring exercises have been maintained to complement the more general information sets. It is expected that global climate change will exacerbate the pressures on inland wetlands, while sea level rises will adversely affect coastal wetlands. It is also expected that the exacerbation of these pressures will increase the potential for near-irreversible changes in the ecological state of some wetlands. Concerted institutional responses to such pressures have in the past proven difficult to sustain, although there is some evidence that a more balanced approach to water use and agriculture is being developed with the provision of increasing funds to purchase water for environmental flows being one example. We identify examples from around Australia that illustrate the impacts on wetlands of long-term climate change from palaeoecological records (south-eastern Australia); water allocation (Murray-Darling Basin); dryland salinisation (south-western Australia); and coastal salinisation (northern Australia). These are provided to illustrate both the extent of change in wetlands and the complexity of differentiating the specific effects of climate change. An appraisal of the main policy responses by government to climate change is provided as a basis for further considering the opportunities for mitigation and adaptation to climate change. Content Type Journal Article Category Effects of Climate Change on Wetlands Pages 1-21 DOI 10.1007/s00027-011-0232-5 Authors C. M. Finlayson, Institute for Land, Water and Society, Charles Sturt University, PO Box 789, Albury, NSW 2640, Australia J. A. Davis, School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia P. A. Gell, Centre for Environmental Management, School of Science and Engineering, University of Ballarat, PO Box 663, Ballarat, VIC 3353, Australia R. T. Kingsford, Australian Rivers and Wetland Centre, University of New South Wales, Sydney, Australia K. A. Parton, Institute for Land, Water and Society, Charles Sturt University, PO Box 883, Orange, NSW 2800, Australia Journal Aquatic Sciences - Research Across Boundaries Online ISSN 1420-9055 Print ISSN 1015-1621
    Print ISSN: 1015-1621
    Electronic ISSN: 1420-9055
    Topics: Biology
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2011-05-22
    Description:    Reduce, reuse, and recycle (3R) policies form the basis of waste management and global warming countermeasures globally, so we conducted a comparative study of 3R and waste management policies in the European Union (EU), USA, Korea, Japan, China, and Vietnam. An international workshop for 3R and waste management policymakers was held in Kyoto, Japan, and a bibliographic survey was also conducted to collect data. 3R policies are clearly given priority in the hierarchy of waste management in every country studied. Thermal recovery, which includes power generation from waste heat and methane gas collected from organic waste, is also a priority; this is consistent with the increased use of countermeasures to reduce greenhouse gas (GHG) emissions. In the EU, waste management is characterized by practical and effective 3R policies through the development of realistic regulations and by the policymakers’ desire to simplify management systems. The policy ideal in China, however, is the development of a circular economy that targets reductions in the amount and hazardousness of waste. Limits on the number of final disposal sites, strategies for procuring resources, and GHG emission countermeasures are closely linked with 3R policies, and further development of 3R policies in parallel with such issues is expected. Content Type Journal Article Pages 1-17 DOI 10.1007/s10163-011-0009-x Authors Shin-ichi Sakai, Environment Preservation Research Center, Kyoto University, Kyoto, 606-8501 Japan Hideto Yoshida, Japan Environmental Safety Corporation, Tokyo, Japan Yasuhiro Hirai, Environment Preservation Research Center, Kyoto University, Kyoto, 606-8501 Japan Misuzu Asari, Environment Preservation Research Center, Kyoto University, Kyoto, 606-8501 Japan Hidetaka Takigami, Research Center for Material Cycles and Waste Management, National Institute for Environmental Studies, Tsukuba, Japan Shin Takahashi, Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan Keijirou Tomoda, Towa Technology, Hiroshima, Japan Maria Victoria Peeler, Hazardous Waste and Toxics Reduction, Washington State Department of Ecology, Olympia, WA, USA Jakub Wejchert, Sector in Unit G.4, Sustainable Production and Consumption, DG Environment, European Commission, Brussels, Belgium Thomas Schmid-Unterseh, Division of Product Responsibility, Avoidance, Recovery and Utilization of Product Waste, Federal Ministry for the Environment, Berlin, Germany Aldo Ravazzi Douvan, Italian Environmental Authority for EU Structural Funds, Ministry for the Environment Land and Sea, Rome, Italy Roy Hathaway, Waste Management Division, Department of Environment, Food and Rural Affairs, London, UK Lars D. Hylander, Department of Earth Sciences, Air and Water Science, Uppsala University, Uppsala, Sweden Christian Fischer, European Topic Centre on Sustainable Consumption and Production, Copenhagen, Denmark Gil Jong Oh, Resource Recirculation Center, National Institute of Environmental Research, Incheon, Korea Li Jinhui, Department of Environmental Science and Engineering, Tsinghua University, Beijing, China Ngo Kim Chi, Union for Scientific Research and Production on Chemical Engineering, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam Journal Journal of Material Cycles and Waste Management Online ISSN 1611-8227 Print ISSN 1438-4957
    Print ISSN: 1438-4957
    Electronic ISSN: 1611-8227
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2011-05-18
    Description:    The tree species composition of a forested landscape may respond to climate change through two primary successional mechanisms: (1) colonization of suitable habitats and (2) competitive dynamics of established species. In this study, we assessed the relative importance of competition and colonization in forest landscape response (as measured by the forest type composition change) to global climatic change. Specifically, we simulated shifts in forest composition within the Boundary Waters Canoe Area of northern Minnesota during the period 2000–2400  AD . We coupled a forest ecosystem process model, PnET-II, and a spatially dynamic forest landscape model, LANDIS-II, to simulate landscape change. The relative ability of 13 tree species to colonize suitable habitat was represented by the probability of establishment or recruitment. The relative competitive ability was represented by the aboveground net primary production. Both competitive and colonization abilities changed over time in response to climatic change. Our results showed that, given only moderate-frequent windthrow (rotation period = 500 years) and fire disturbances (rotation period = 300 years), competition is relatively more important for the short-term (〈100 years) compositional response to climatic change. For longer-term forest landscape response (〉100 years), colonization became relatively more important. However, if more frequent fire disturbances were simulated, then colonization is the dominant process from the beginning of the simulations. Our results suggest that the disturbance regime will affect the relative strengths of successional drivers, the understanding of which is critical for future prediction of forest landscape response to global climatic change. Content Type Journal Article Pages 1-31 DOI 10.1007/s10584-011-0098-5 Authors Chonggang Xu, Division of Earth and Environmental Sciences, Los Alamos National Laboratory, Los Alamos, NM 87544, USA George Z. Gertner, Department of Natural Resources & Environmental Sciences, University of Illinois, W-523 Turner Hall, MC-047, 1102 South Goodwin Ave, Urbana, IL 61801, USA Robert M. Scheller, Environmental Science and Management, Portland State University, P.O. Box 751, Portland, OR 97207, USA Journal Climatic Change Online ISSN 1573-1480 Print ISSN 0165-0009
    Print ISSN: 0165-0009
    Electronic ISSN: 1573-1480
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2011-11-04
    Description:    This paper explores two issues that have been receiving increasing attention in recent decades, climate change adaptation and natural disaster risk reduction. An examination of the similarities and differences between them reveals important linkages but also significant differences, including the spectrum of threats, time and spatial scales, the importance of local versus global processes, how risks are perceived, and degree of uncertainty. Using a risk perspective to analyze these issues, preferential strategies emerge related to choices of being proactive, reactive, or emphasizing risk management as opposed to the precautionary principle. The policy implications of this analysis are then explored, using Canada as a case study. Content Type Journal Article Pages 1-15 DOI 10.1007/s10584-011-0259-6 Authors David Etkin, Disaster and Emergency Management, Faculty of Liberal Arts and Professional Studies, York University, 4700 Keele St, Toronto, Ontario, Canada M3J 1P3 J. Medalye, Political Science, Faculty of Liberal Arts & Professional Studies, York University, Toronto, Ontario, Canada K. Higuchi, Faculty of Environmental Studies, York University, Toronto, Ontario, Canada Journal Climatic Change Online ISSN 1573-1480 Print ISSN 0165-0009
    Print ISSN: 0165-0009
    Electronic ISSN: 1573-1480
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2011-08-29
    Description:    The emerging interest in the biological and conservation significance of locally rare species prompts a number of questions about their correspondence with other categories of biodiversity, especially global rarity. Here we present an analysis of the correspondence between the distributions of globally and locally rare plants. Using biological hotspots of rarity as our framework, we evaluate the extent to which conservation of globally rare plants will act as a surrogate for conservation of locally rare taxa. Subsequently, we aim to identify gaps between rarity hotspots and protected land to guide conservation planning. We compiled distribution data for globally and locally rare plants from botanically diverse Napa County, California into a geographic information system. We then generated richness maps highlighting hotspots of global and local rarity. Following this, we overlaid the distribution of these hotspots with the distribution of protected lands to identify conservation gaps. Based on occupancy of 1 km 2 grid cells, we found that over half of Napa County is occupied by at least one globally or locally rare plant. Hotspots of global and local rarity occurred in a substantially smaller portion of the county. Of these hotspots, less than 5% were classified as multi-scale hotspots, i.e. they were hotspots of global and local rarity. Although, several hotspots corresponded with the 483 km 2 of protected lands in Napa County, some of the richest areas did not. Thus, our results show that there are important conservation gaps in Napa County. Furthermore, if only hotspots of global rarity are preserved, only a subset of locally rare plants will be protected. Therefore, conservation of global, local, and multi-scale hotspots needs serious consideration if the goals are to protect a larger variety of biological attributes, prevent extinction, and limit extirpation in Napa County. Content Type Journal Article Category Original Paper Pages 1-12 DOI 10.1007/s10531-011-0137-6 Authors Benjamin J. Crain, Department of Biological Sciences, Humboldt State University, 1 Harpst Street, Arcata, CA 95521, USA Jeffrey W. White, Department of Biological Sciences, Humboldt State University, 1 Harpst Street, Arcata, CA 95521, USA Steven J. Steinberg, Department of Environmental Science and Management, Humboldt State University, 1 Harpst Street, Arcata, CA 95521, USA Journal Biodiversity and Conservation Online ISSN 1572-9710 Print ISSN 0960-3115
    Print ISSN: 0960-3115
    Electronic ISSN: 1572-9710
    Topics: Biology
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2011-01-02
    Description:    Within climate change impact research, the consideration of socioeconomic processes remains a challenge. Socioeconomic systems must be equipped to react and adapt to global change. However, any reasonable development or assessment of sustainable adaptation strategies requires a comprehensive consideration of human-environment interactions. This requirement can be met through multi-agent simulation, as demonstrated in the interdisciplinary project GLOWA-Danube (GLObal change of the WAter Cycle; www.glowa-danube.de ). GLOWA-Danube has developed an integrated decision support tool for water and land use management in the Upper Danube catchment (parts of Germany and Austria, 77,000 km 2 ). The scientific disciplines invoked in the project have implemented sixteen natural and social science models, which are embedded in the simulation framework DANUBIA. Within DANUBIA, a multi-agent simulation approach is used to represent relevant socioeconomic processes. The structure and results of three of these multi-agent models, WaterSupply, Household and Tourism, are presented in this paper. A main focus of the paper is on the development of global change scenarios (climate and society) and their application to the presented models. The results of different simulation runs demonstrate the potential of multi-agent models to represent feedbacks between different water users and the environment. Moreover, the interactive usage of the framework allows to define and vary scenario assumptions so as to assess the impact of potential interventions. It is shown that integrated modelling and scenario design not only provide valuable information, but also offer a platform for discussing complex human-environment-interactions with stakeholders. Content Type Journal Article DOI 10.1007/s11027-010-9274-6 Authors Anja Soboll, Department of Geography, University of Munich, Luisenstrasse 37, 80333 Munich, Germany Michael Elbers, Center for Environmental Systems Research, University of Kassel, Kurt-Wolters-Strasse 3, 34109 Kassel, Germany Roland Barthel, Institute of Hydraulic Engineering, University of Stuttgart, Pfaffenwaldring 7a, 70569 Stuttgart, Germany Juergen Schmude, Department of Geography, University of Munich, Luisenstrasse 37, 80333 Munich, Germany Andreas Ernst, Center for Environmental Systems Research, University of Kassel, Kurt-Wolters-Strasse 3, 34109 Kassel, Germany Ralf Ziller, Institute of Hydraulic Engineering, University of Stuttgart, Pfaffenwaldring 7a, 70569 Stuttgart, Germany Journal Mitigation and Adaptation Strategies for Global Change Online ISSN 1573-1596 Print ISSN 1381-2386
    Print ISSN: 1381-2386
    Electronic ISSN: 1573-1596
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2011-03-18
    Description: Purpose   Managing declining nutrient use efficiency in crop production has been a global priority to maintain high agricultural productivity with finite non-renewable nutrient resources, in particular phosphorus (P). Rapid spectroscopic methods increase measurement density of soil nutrients and improve the accuracy of rates of additional P inputs. Materials and methods   Soil P was measured by a multi-element energy-dispersive X-ray fluorescence spectroscopic (XRFS) method to estimate the spatial distribution of soil total (XRFS-P) and bioavailable P in a Fluvisol occurring on a 20-ha contiguous area comprised of seven elongated field strips under a wheat–maize rotation near the Quzhou Agricultural Experiment Station in the North China Plain. Results and discussion   Soil XRFS-P was highly variable along the length of the field strips and across the entire area after decades of continuous cultivation. A linear relationship existed between XRFS-P and bicarbonate-extractable P or Mehlich 3-extractable P, allowing a description of the spatial distribution of bioavailable P based on XRFS, in both directions of a two-dimensional grid covering the entire area ( p  〈 0.05). Distinct management zones were identified for more precise placement of additional P. Conclusions   Direct element-specific analysis and a high sample throughput make XRFS an indispensable component of a new approach to sustainably manage P, and other macronutrients of low atomic number Z such as K, Ca, or Cl in production fields, based on their site-specific variations in the soil. Concerning P, this rapid precision approach provides a promising avenue to manage soil P as a regionalized variable while preventing zones of deficiency or surplus P that can affect plant productivity or potential loss from a field, respectively. Content Type Journal Article Pages 1-12 DOI 10.1007/s11368-011-0347-2 Authors Thanh H. Dao, USDA-ARS Environmental Management and ByProducts Utilization Laboratory, BARC-East Bldg. 306, Beltsville, MD 20705, USA Yuxin X. Miao, College of Resources and Environmental Science, China Agricultural University, Beijing, People’s Republic of China Fusuo S. Zhang, College of Resources and Environmental Science, China Agricultural University, Beijing, People’s Republic of China Journal Journal of Soils and Sediments Online ISSN 1614-7480 Print ISSN 1439-0108
    Print ISSN: 1439-0108
    Electronic ISSN: 1614-7480
    Topics: Geosciences
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2011-12-22
    Description:    In recent years, owing to global warming and the rising sea levels, beach nourishment and groin building have been increasingly employed to protect coastal land from shoreline erosion. These actions may degrade beach habitats and reduce biomass and invertebrate density at sites where they were employed. We conducted an eco-environmental evaluation at the Anping artificial beach-nourishment project area. At this site, sand piles within a semi-enclosed spur groin have been enforced by use of eco-engineering concepts since 2003. Four sampling sites were monitored during the study period from July 2002 to September 2008. The environmental impact assessment and biological investigations that we conducted are presented here. The results from this study indicate that both biotic (number of species, number of individual organisms, and Shannon-Wiener diversity) and abiotic parameters (suspended solids, biological oxygen demand, chemical oxygen demand, dissolved inorganic nitrogen, dissolved inorganic phosphorus, total phosphorus, total organic carbon, median diameter, and water content) showed significant differences before and after beach engineering construction. Biological conditions became worse in the beginning stages of the engineering but improved after the restoration work completion. This study reveals that the composition of benthic invertebrates changed over the study period, and two groups of organisms, Bivalvia and Gastropoda, seemed to be particularly suitable to this habitat after the semi-enclosed artificial structures completion. Content Type Journal Article Pages 215-236 DOI 10.1007/s13344-011-0019-4 Authors Chun-Han Shih, Institute of Fisheries Science, National Taiwan University, Taipei, 10617 China Yi-Yu Kuo, Department of Civil Engineering, National Chiao Tung University, Hsinchu, 30010 China Ta-Jen Chu, Department of Leisure and Recreation Management, Chung Hua University, Hsinchu, 30012 China Wen-Chieh Chou, Department of Civil Engineering, Chung Hua University, Hsinchu, 30012 China Wei-Tse Chang, Institute of Fisheries Science, National Taiwan University, Taipei, 10617 China Ying-Chou Lee, Institute of Fisheries Science, National Taiwan University, Taipei, 10617 China Journal China Ocean Engineering Print ISSN 0890-5487 Journal Volume Volume 25 Journal Issue Volume 25, Number 2
    Print ISSN: 0890-5487
    Topics: Geosciences , Physics
    Published by Springer on behalf of The Chinese Ocean Engineering Society.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2012-06-12
    Description:    This review focuses on biological profiles of contemporary acaricides, acaricide resistance, and other up-to-date issues related to acaricide use in management of plant-feeding mites. Over the last two decades a considerable number of synthetic acaricides emerged on the global market, most of which exert their effects acting on respiration targets. Among them, the most important are inhibitors of mitochondrial electron transport at complex I (METI-acaricides). Discovery of tetronic acid derivatives (spirodiclofen and spiromesifen) introduced a completely new mode of action: lipid synthesis inhibition. Acaricide resistance in spider mites has become a global phenomenon. The resistance is predominantly caused by a less sensitive target site (target site resistance) and enhanced detoxification (metabolic resistance). The major emphasis in current research on acaricide resistance mechanisms deals with elucidation of their molecular basis. Point mutations resulting in structural changes of target site and leading to its reduced sensitivity, have recently been associated with resistance in Tetranychus urticae Koch and other spider mites. The only sustainable, long-term perspective for acaricide use is their implementation in multitactic integrated pest management programs, in which acaricides are applied highly rationally and in interaction with other control tactics. Considering that the key recommendation for effective acaricide resistance management is reduction of the selection for resistance by alternations, sequences, rotations, and mixtures of compounds with different modes of action, the main challenge that acaricide use is facing is the need for new active substances with novel target sites. Besides implementation of advanced technologies for screening and design of new synthetic compounds, wider use of microbial and plant products with acaricidal activity could also contribute increased biochemical diversity of acaricides. Content Type Journal Article Category Original Paper Pages 1-14 DOI 10.1007/s10340-012-0442-1 Authors Dejan Marcic, Department of Applied Entomology and Zoology, Institute of Pesticides and Environmental Protection, Banatska 31B, P.O. Box 163, 11080 Belgrade-Zemun, Serbia Journal Journal of Pest Science Online ISSN 1612-4766 Print ISSN 1612-4758
    Print ISSN: 1612-4758
    Electronic ISSN: 1612-4766
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2012-03-22
    Description:    Geoengineering methods are intended to reduce climate change, which is already having demonstrable effects on ecosystem structure and functioning in some regions. Two types of geoengineering activities that have been proposed are: carbon dioxide (CO 2 ) removal (CDR), which removes CO 2 from the atmosphere, and solar radiation management (SRM, or sunlight reflection methods), which reflects a small percentage of sunlight back into space to offset warming from greenhouse gases (GHGs). Current research suggests that SRM or CDR might diminish the impacts of climate change on ecosystems by reducing changes in temperature and precipitation. However, sudden cessation of SRM would exacerbate the climate effects on ecosystems, and some CDR might interfere with oceanic and terrestrial ecosystem processes. The many risks and uncertainties associated with these new kinds of purposeful perturbations to the Earth system are not well understood and require cautious and comprehensive research. Content Type Journal Article Category Review Paper Pages 1-20 DOI 10.1007/s13280-012-0258-5 Authors Lynn M. Russell, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Dr. Mail Code 0221, La Jolla, CA 92093-0221, USA Philip J. Rasch, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P. O. Box 999, MSIN K9-34, Richland, WA 99352, USA Georgina M. Mace, Centre for Population Biology, Imperial College London, Ascot, Berks SL5 7PY, UK Robert B. Jackson, Nicholas School of the Environment, Duke University, Durham, NC 27708, USA John Shepherd, Earth System Science, School of Ocean and Earth Sciences, National Oceanography Centre, University of Southampton, European Way, Southampton, SO14 3ZH UK Peter Liss, School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ UK Margaret Leinen, Harbor Branch Oceanographic Institute, 5600 US Rt 1 North, Fort Pierce, FL 34946, USA David Schimel, NEON Inc, 1685 38th Street, Boulder, CO 80305, USA Naomi E. Vaughan, Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK Anthony C. Janetos, Joint Global Change Research Institute Pacific Northwest National Laboratory/University of Maryland, 5825 University Research Court, Suite 3500, College Park, MD 20740, USA Philip W. Boyd, NIWA Centre of Chemical & Physical Oceanography, Department of Chemistry, University of Otago, Dunedin, New Zealand Richard J. Norby, Environmental Sciences Division, Oak Ridge National Laboratory, Bethel Valley Road, Bldg. 2040, MS-6301, Oak Ridge, TN 37831-6301, USA Ken Caldeira, Department of Global Ecology, Carnegie Institution, Stanford, CA 94305, USA Joonas Merikanto, Division of Atmospheric Sciences, Department of Physics, University of Helsinki, P.O Box 64, 00014 Helsinki, Finland Paulo Artaxo, Institute of Physics, University of São Paulo, Rua do Matão, Travessa R, 187, São Paulo, SP CEP 05508-090, Brazil Jerry Melillo, The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA M. Granger Morgan, Department of Engineering and Public Policy, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA Journal AMBIO: A Journal of the Human Environment Online ISSN 1654-7209 Print ISSN 0044-7447
    Print ISSN: 0044-7447
    Electronic ISSN: 1654-7209
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer on behalf of The Royal Swedish Academy of Sciences.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...