GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • Articles  (17)
  • IUGG Secretariat, KIT Karlsruhe Institute of Technology  (6)
  • Copernicus Publications  (4)
  • ELSEVIER SCIENCE BV  (4)
  • ELSEVIER SCI LTD  (3)
  • 2010-2014  (17)
  • 1
    facet.materialart.
    Unknown
    IUGG Secretariat, KIT Karlsruhe Institute of Technology
    Publication Date: 2020-02-12
    Language: English
    Type: info:eu-repo/semantics/other
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    IUGG Secretariat, KIT Karlsruhe Institute of Technology
    Publication Date: 2020-02-12
    Language: English
    Type: info:eu-repo/semantics/other
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    IUGG Secretariat, KIT Karlsruhe Institute of Technology
    Publication Date: 2020-02-12
    Language: English
    Type: info:eu-repo/semantics/other
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    ELSEVIER SCI LTD
    In:  EPIC3Ocean & Coastal Management, ELSEVIER SCI LTD, 68, pp. 69-78, ISSN: 0964-5691
    Publication Date: 2016-06-13
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-02-02
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Copernicus Publications
    In:  EPIC3Earth System Science Data Discussions, Copernicus Publications, 7(2), pp. 521-610, ISSN: 1866-3591
    Publication Date: 2018-02-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-06-21
    Description: The dinoflagellate genus Alexandrium is one of the major harmful algal bloom (HAB) genera with respect to the diversity, magnitude and consequences of blooms. The ability of Alexandrium to colonize multiple habitats and to persist over large regions through time is testimony to the adaptability and resilience of this group of species. Three different families of toxins, as well as an as yet incompletely characterized suite of allelochemicals are produced among Alexandrium species. Nutritional strategies are equally diverse, including the ability to utilize a range of inorganic and organic nutrient sources, and feeding by ingestion of other organisms. Many Alexandrium species have complex life histories that include sexuality and often, but not always, cyst formation, which is characteristic of a meroplanktonic life strategy and offers considerable ecological advantages. Due to the public health and ecosystem impacts of Alexandrium blooms, the genus has been extensively studied, and there exists a broad knowledge base that ranges from taxonomy and phylogeny through genomics and toxin biosynthesis to bloom dynamics and modeling. Here we present a review of the genus Alexandrium, focusing on the major toxic and otherwise harmful species.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-17
    Description: During the ARK XXV 1+2 expedition in the Arctic Ocean carried out in June–July 2010 aboard the R/V Polarstern, we measured carbon monoxide (CO), non-methane hydrocarbons (NMHC) and phytoplankton pigments at the sea surface and down to a depth 5 of 100m. The CO and NMHC sea-surface concentrations were highly variable; CO, propene and isoprene levels ranged from 0.6 to 17.5 nmol l−1, 1 to 322 pmol l−1 and 1 to 541 pmol l−1, respectively. The CO and alkene concentrations were enhanced in polar waters off of Greenland, which were more stratified because of ice melting and richer in chromophoric dissolved organic matter (CDOM) than typical North Atlantic 10 waters. The spatial distribution of the surface concentrations of CO was consistent with our current understanding of CO-induced UV photo-production in the sea. The vertical distributions of the CO and alkenes followed the trend of light penetration, with the concentrations displaying a relatively regular exponential decrease down to nonmeasurable values below 50 m. However, no diurnal variations of CO or alkene con15 centrations were observed in the stratified and irradiated surface layers. This finding suggests that the production and removal processes of CO and alkenes were tightly coupled. We tentatively determined a first-order rate constant for the microbial consumption of CO of 0.5 d−1, which is in agreement with previous studies. On several occasions, we observed the existence of subsurface CO maxima at the level of the 20 deep chlorophyll maximum. This finding represents field evidence for the existence of a non-photochemical CO production pathway, most likely of phytoplanktonic origin. The corresponding production rates normalized to the chlorophyll content were in the range of those estimated from laboratory experiments. In general, the vertical distributions of isoprene followed that of the phytoplankton biomass. Hence, oceanic data support the 25 existence of biological production of CO and isoprene in the Arctic Ocean
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Journal of Hydrology, ELSEVIER SCIENCE BV, 454-45(0), pp. 173-186, ISSN: 0022-1694
    Publication Date: 2019-07-17
    Description: Freshwater lenses below barrier islands are dynamic systems affected by changes in morphodynamic patterns, groundwater recharge and discharge. They are also vulnerable to pollution and overabstraction of groundwater. Basic knowledge on hydrogeological and hydrochemical processes of freshwater lenses is important to ensure a sustainable water management, especially when taking into account possible effects of climate change. This is the first study which gives a compact overview on the age distribution, recharge conditions and hydrochemical evolution of a barrier island freshwater lens in the southern North Sea (Spiekeroog Island, Eastfrisian Wadden Sea). Two ground- and surface water sampling campaigns were carried out in May and July 2011, supplemented by monthly precipitation sampling from July to October. 3H–3He ages, stable oxygen and hydrogen isotopes and major ion concentrations show that the freshwater lens reaches a depth of 44 mbsl, where an aquitard constrains further expansion in vertical direction. Groundwater ages are increasing from 4.4 years in 12 mbsl up to 〉70 years at the freshwater– saltwater interface. Stable isotope signatures reflect average local precipitation signatures. An annual recharge rate of 300–400 mm was calculated with 3H–3He data. Freshwater is primarily of Na–Ca–Mg–HCO3– and Ca–Na–HCO3–Cl type, while lowly mineralized precipitation and saltwater are of Na–Cl types. A trend towards heavier stable isotope signatures and higher electric conductivities in the shallower, younger groundwater within the freshwater lens may indicate increasing atmospheric temperatures in the last 30 years.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-17
    Description: Soils and other unconsolidated deposits in the northern circumpolar permafrost region store large amounts of soil organic carbon (SOC). This SOC is potentially vulnerable to remobilization following soil warming and permafrost thaw, but stock estimates are poorly constrained and quantitative error estimates were lacking. This study presents revised estimates of the permafrost SOC pool, including quantitative uncertainty estimates, in the 0–3 m depth range in soils as well as for deeper sediments (〉3 m) in deltaic deposits of major rivers and in the Yedoma region of Siberia and Alaska. The revised estimates are based on significantly larger databases compared to previous studies. Compared to previous studies, the number of individual sites/pedons has increased by a factor ×8–11 for soils in the 1–3 m depth range,, a factor ×8 for deltaic alluvium and a factor ×5 for Yedoma region deposits. Upscaled based on regional soil maps, estimated permafrost region SOC stocks are 217 ± 15 and 472 ± 34 Pg for the 0–0.3 m and 0–1 m soil depths, respectively (±95% confidence intervals). Depending on the regional subdivision used to upscale 1–3 m soils (following physiography or continents), estimated 0–3 m SOC storage is 1034 ± 183 Pg or 1104 ± 133 Pg. Of this, 34 ± 16 Pg C is stored in thin soils of the High Arctic. Based on generalised calculations, storage of SOC in deep deltaic alluvium (〉3 m to ≤60 m depth) of major Arctic rivers is estimated to 91 ± 39 Pg (of which 69 ± 34 Pg is in permafrost). In the Yedoma region, estimated 〉3 m SOC stocks are 178 +140/−146 Pg, of which 74 +54/−57 Pg is stored in intact, frozen Yedoma (late Pleistocene ice- and organic-rich silty sediments) with the remainder in refrozen thermokarst deposits (±16/84th percentiles of bootstrapped estimates). A total estimated mean storage for the permafrost region of ca. 1300–1370 Pg with an uncertainty range of 930–1690 Pg encompasses the combined revised estimates. Of this, ≤819–836 Pg is perennially frozen. While some components of the revised SOC stocks are similar in magnitude to those previously reported for this region, there are also substantial differences in individual components. There is evidence of remaining regional data-gaps. Estimates remain particularly poorly constrained for soils in the High Arctic region and physiographic regions with thin sedimentary overburden (mountains, highlands and plateaus) as well as for 〉3 m depth deposits in deltas and the Yedoma region.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...