GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Alfred Wegener Institute for Polar and Marine Research  (38)
  • Elsevier  (17)
  • Wiley-Blackwell  (5)
  • 2010-2014  (60)
Document type
Keywords
Years
Year
  • 1
    Publication Date: 2019-09-23
    Description: Biological and environmental changes are creating a growing demand for historical and global data sets. Comparing up-to-date ecological and biological findings with historical statements has become a major part of scientific work in the field of ecology. This evaluation and comparison procedure is very time-consuming while the availability of raw data is very low. Comparisons between original findings – if available – require a lot of work from print publication to digitalization or transformation to appropriate data formats. The effective use of working capacity is a general issue and has become important, should the use of information technologies be invoked to minimize time-wasting copy and paste operations. In this paper we aim to present a working repository for terrestrial biological data. The implementation of this type of data repository will provide various services to participating scientists as long as the final aim is the publication of these repositories. Furthermore, the security and long-term availability of environmental data is an issue of increasing importance to the scientific community. Unrepeatable sampling events and any data thus obtained are precious in time series analysis. For this reason, a well-structured storage of data is necessary for easy accessibility, retrieval and comparability. This is an important issue for the community of environmental scientists. The need to construct and implement repositories should prevail against all hitches and we are therefore describing our on-going task with the primary population of this kind of data repository. A biological and ecological information system is a matter of public interest and should also be a key issue for ecologists.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-09-06
    Description: This paper focuses on the marine foundation eelgrass species, Zostera marina, along a gradient from the northern Baltic Sea to the north-east Atlantic. This vast region supports a minimum of 1480 km2 eelgrass (maximum 〉2100 km2), which corresponds to more than four times the previously quantified area of eelgrass in Western Europe. Eelgrass meadows in the low salinity Baltic Sea support the highest diversity (4–6 spp.) of angiosperms overall, but eelgrass productivity is low (〈2 g dw m-2 d-1) and meadows are isolated and genetically impoverished. Higher salinity areas support monospecific meadows, with higher productivity (3–10 g dw m-2 d-1) and greater genetic connectivity. The salinity gradient further imposes functional differences in biodiversity and food webs, in particular a decline in number, but increase in biomass of mesograzers in the Baltic. Significant declines in eelgrass depth limits and areal cover are documented, particularly in regions experiencing high human pressure. The failure of eelgrass to re-establish itself in affected areas, despite nutrient reductions and improved water quality, signals complex recovery trajectories and calls for much greater conservation effort to protect existing meadows. The knowledge base for Nordic eelgrass meadows is broad and sufficient to establish monitoring objectives across nine national borders. Nevertheless, ensuring awareness of their vulnerability remains challenging. Given the areal extent of Nordic eelgrass systems and the ecosystem services they provide, it is crucial to further develop incentives for protecting them.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-07-07
    Description: The field of ecoinformatics provides concepts, methods and standards to guide management and analysis of ecological data with particular emphasis on exploration of co-occurrences of organisms and their linkage to environmental conditions and taxon attributes. In this editorial, introducing the Special Feature ‘Ecoinformatics and global change’, we reflect on the development of ecoinformatics and explore its importance for future global change research with special focus on vegetation-plot data. We show how papers in this Special Feature illustrate important directions and approaches in this emerging field. We suggest that ecoinformatics has the potential to make profound contributions to pure and applied sciences, and that the analyses, databases, meta-databases, data exchange formats and analytical tools presented in this Special Feature advance this approach to vegetation science and illustrate and address important open questions. We conclude by describing important future directions for the development of the field including incentives for data sharing, creation of tools for more robust statistical analysis, utilities for integration of data that conform to divergent taxonomic standards, and databases that provide detailed plot-specific data so as to allow users to find and access data appropriate to their research needs.
    Print ISSN: 1100-9233
    Electronic ISSN: 1654-1103
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-02-18
    Description: The Copenhagen Diagnosis is a summary of the global warming peer reviewed science since 2007. Produced by a team of 26 scientists led by the University of New South Wales Climate Research Centre, the Diagnosis convincingly proves that the effects of global warming have gotten worse in the last three years. It is a timely update to the UN’s Intercontinental Panel on Climate Change 2007 Fourth Assessment document (IPCC AR4). The report places the blame for the century long temperature increase on human factors and says the turning point ";must come soon";. If we are to limit warming to 2 degrees above pre-industrial values, global emissions must peak by 2020 at the latest and then decline rapidly. The scientists warned that waiting for higher levels of scientific certainty could mean that some tipping points will be crossed before they are recognized. By 2050 we will effectively need to be in a post-carbon economy if we are to avoid unlivable temperatures.
    Type: Book , NonPeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Society’s needs for a network of in situ ocean observing systems cross many areas of earth and marine science. Here we review the science themes that benefit from data supplied from ocean observatories. Understanding from existing studies is fragmented to the extent that it lacks the coherent long-term monitoring needed to address questions at the scales essential to understand climate change and improve geo-hazard early warning. Data sets from the deep sea are particularly rare with long-term data available from only a few locations worldwide. These science areas have impacts on societal health and well-being and our awareness of ocean function in a shifting climate. Substantial efforts are underway to realise a network of open-ocean observatories around European Seas that will operate over multiple decades. Some systems are already collecting high-resolution data from surface, water column, seafloor, and sub-seafloor sensors linked to shore by satellite or cable connection in real or near-real time, along with samples and other data collected in a delayed mode. We expect that such observatories will contribute to answering major ocean science questions including: How can monitoring of factors such as seismic activity, pore fluid chemistry and pressure, and gas hydrate stability improve seismic, slope failure, and tsunami warning? What aspects of physical oceanography, biogeochemical cycling, and ecosystems will be most sensitive to climatic and anthropogenic change? What are natural versus anthropogenic changes? Most fundamentally, how are marine processes that occur at differing scales related? The development of ocean observatories provides a substantial opportunity for ocean science to evolve in Europe. Here we also describe some basic attributes of network design. Observatory networks provide the means to coordinate and integrate the collection of standardised data capable of bridging measurement scales across a dispersed area in European Seas adding needed certainty to estimates of future oceanic conditions. Observatory data can be analysed along with other data such as those from satellites, drifting floats, autonomous underwater vehicles, model analysis, and the known distribution and abundances of marine fauna in order to address some of the questions posed above. Standardised methods for information management are also becoming established to ensure better accessibility and traceability of these data sets and ultimately to increase their use for societal benefit. The connection of ocean observatory effort into larger frameworks including the Global Earth Observation System of Systems (GEOSS) and the Global Monitoring of Environment and Security (GMES) is integral to its success. It is in a greater integrated framework that the full potential of the component systems will be realised.
    Description: Published
    Description: 1-33
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: reserved
    Keywords: Seafloor and water columnobservatories ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics ; 01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models ; 03. Hydrosphere::03.01. General::03.01.07. Physical and biogeochemical interactions ; 03. Hydrosphere::03.01. General::03.01.08. Instruments and techniques ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions ; 03. Hydrosphere::03.03. Physical::03.03.02. General circulation ; 03. Hydrosphere::03.03. Physical::03.03.03. Interannual-to-decadal ocean variability ; 03. Hydrosphere::03.03. Physical::03.03.05. Instruments and techniques ; 03. Hydrosphere::03.04. Chemical and biological::03.04.01. Biogeochemical cycles ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.04. Ecosystems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.08. Instruments and techniques ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.05. Geomagnetism::04.05.05. Main geomagnetic field ; 04. Solid Earth::04.05. Geomagnetism::04.05.08. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.03. Heat generation and transport ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.02. Seismological data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.02. Data dissemination::05.02.04. Hydrogeological data ; 05. General::05.08. Risk::05.08.01. Environmental risk ; 05. General::05.08. Risk::05.08.02. Hydrogeological risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-02-24
    Description: Questions: What are the most likely environmental drivers for compositional herb layer changes as indicated by trait differences between winner and loser species? Location: Weser-Elbe region (NW Germany). Methods: We resurveyed the herb layer communities of ancient forest patches on base-rich sites of 175 semi-permanent plots. Species traits were tested for their ability to discriminate between winner and loser species using logistic regression analyses and deviance partitioning. Results: Of 115 species tested, 31 were identified as winner species and 30 as loser species. Winner species had higher seed longevity, flowered later in the season and more often had an oceanic distribution compared to loser species. Loser species tended to have a higher specific leaf area, were more susceptible to deer browsing and had a performance optimum at higher soil pH compared to winner species. The loser species also represented several ancient forest and threatened species. Deviance partitioning indicated that local drivers (i.e. disturbance due to forest management) were primarily responsible for the species shifts, while regional drivers (i.e. browsing pressure and acidification from atmospheric deposition) and global drivers (i.e. climate warming) had moderate effects. There was no evidence that canopy closure, drainage or eutrophication contributed to herb layer changes. Conclusions: The relative importance of the different drivers as indicated by the winner and loser species differs from that found in previous long-term studies. Relating species traits to species performance is a valuable tool that provides insight into the environmental drivers that are most likely responsible for herb layer changes.
    Print ISSN: 1100-9233
    Electronic ISSN: 1654-1103
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-17
    Description: Coral recruitment was assessed in highly diverse and economically important Spermonde Archipelago, a reef system subjected to land-based sources of siltation/pollution and destructive fishing, over a period of 2 years. Recruitment on settlement tiles reached up to 705 spat m�2 yr�1 and was strongest in the dry season (July–October), except off-shore, where larvae settled earlier. Pocilloporidae dominated nearshore, while a more diverse community of Acroporidae, Poritidae and others settled in the less polluted mid-shelf and off-shore reefs. Non-coral fouling community appeared to hardly influence initial coral settlement on the tiles, although, this does not necessarily infer low coral post-settlement mortality, which may be enhanced at the near- and off-shore reefs as indicated by increased abundances of potential space competitors on natural substrate. Blast fishing showed no local reduction in coral recruitment and live hard coral cover increased in oligotrophic reefs, indicating potential for coral recovery, if managed effectively.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-11-28
    Description: Publication year: 2011 Source: Journal of Hydrology, Available online 25 November 2011 Shahbaz Khan The sample papers collected in this special volume represent the interdisciplinary studies presented at a major international conference that took place in San Diego, USA, October 11 – 13, 2010 in collaboration with UNESCO’s International Hydrological Program (IHP) Hydrology for the Environment Life and Policy (HELP) network and the Elsevier Journal of Hydrology. This conference targeted the emerging interdisciplinary science themes at the interface between hydrology and other scientific disciplines, including climate change, biology, chemistry and social sciences. These subjects are of particular relevance to current global water crisis, since population increases and a changing climate is bringing new pressures on hydrological systems around the world. The papers presented at the conference focused on the following five interdisciplinary themes:•Hydrology and climate change.•Hydrology, bio-geochemistry and environmental management.•Hydrology, health and improved socio-economic conditions.•Hydrology, history and conflicts.•Hydrology: past, present and future developments.This effort has highlighted the need to further focus hydrological research at the interdisciplinary interfaces between biophysical, social and economic sciences to assist with evidence based legislation and policy making in real catchments while empowering stakeholders in pursuit of real answers.
    Print ISSN: 0022-1694
    Electronic ISSN: 1879-2707
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-07-07
    Description: Tropical forests are biologically diverse ecosystems that play important roles in the carbon cycle and maintenance of global biodiversity. Understanding how tropical forests respond to environmental changes is important, as changes in carbon storage can modulate the rate and magnitude of climate change. Applying an ecoinformatics approach for managing long-term forest inventory plot data, where individual trees are tracked over time, facilitates regional and cross-continental forest research to evaluate changes in taxonomic composition, growth, recruitment and mortality rates, and carbon and biomass stocks. We developed ForestPlots.net as a secure, online inventory data repository and to facilitate data management of long-term tropical forest plots to promote scientific collaborations among independent researchers. The key novel features of the database are: (a) a design that efficiently deals with time-series data; (b) data management tools to assess potential errors; and (c) a query library to generate outputs (e.g. biomass and carbon stock changes over time).
    Print ISSN: 1100-9233
    Electronic ISSN: 1654-1103
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-08-18
    Description: Seismic surveys are frequently a matter of concern regarding their potentially negative impacts on marine mammals. In the Southern Ocean, which provides a critical habitat for several endangered cetacean species, seismic research activities are undertaken at a circumpolar scale. In order to minimize impacts of these surveys, pre-cruise planning requires detailed, spatio-temporally resolved knowledge on the likelihood of encountering these species in the survey area. In this publication we present predictive habitat modelling as a potential tool to support decisions for survey planning. We associated opportunistic sightings (2005–2011) of humpback (Megaptera novaeangliae, N=93) and Antarctic minke whales (Balaenoptera bonaerensis, N=139) with a range of static and dynamic environmental variables. A maximum entropy algorithm (Maxent) was used to develop habitat models and to calculate daily basinwide/circumpolar prediction maps to evaluate how species-specific habitat conditions evolved throughout the spring and summer months. For both species, prediction maps revealed considerable changes in habitat suitability throughout the season. Suitable humpback whale habitat occurred predominantly in ice-free areas, expanding southwards with the retreating sea ice edge, whereas suitable Antarctic minke whale habitat was consistently predicted within sea ice covered areas. Daily, large-scale prediction maps provide a valuable tool to design layout and timing of seismic surveys as they allow the identification and consideration of potential spatio-temporal hotspots to minimize potential impacts of seismic surveys on Antarctic cetacean species.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...