GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2023-02-08
    Description: A major surface circulation feature of the Arctic Ocean is the Transpolar Drift (TPD), a current that transports river‐influenced shelf water from the Laptev and East Siberian Seas toward the center of the basin and Fram Strait. In 2015, the international GEOTRACES program included a high‐resolution pan‐Arctic survey of carbon, nutrients, and a suite of trace elements and isotopes (TEIs). The cruises bisected the TPD at two locations in the central basin, which were defined by maxima in meteoric water and dissolved organic carbon concentrations that spanned 600 km horizontally and ~25‐50 m vertically. Dissolved TEIs such as Fe, Co, Ni, Cu, Hg, Nd, and Th, which are generally particle‐reactive but can be complexed by organic matter, were observed at concentrations much higher than expected for the open ocean setting. Other trace element concentrations such as Al, V, Ga, and Pb were lower than expected due to scavenging over the productive East Siberian and Laptev shelf seas. Using a combination of radionuclide tracers and ice drift modeling, the transport rate for the core of the TPD was estimated at 0.9 ± 0.4 Sv (106 m3 s‐1). This rate was used to derive the mass flux for TEIs that were enriched in the TPD, revealing the importance of lateral transport in supplying materials beneath the ice to the central Arctic Ocean and potentially to the North Atlantic Ocean via Fram Strait. Continued intensification of the Arctic hydrologic cycle and permafrost degradation will likely lead to an increase in the flux of TEIs into the Arctic Ocean.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Solid Earth, 121 (3). pp. 1405-1424.
    Publication Date: 2019-09-23
    Description: A bottom-simulating reflector (BSR) occurs west of Svalbard in water depths exceeding 600 m, indicating that gas hydrate occurrence in marine sediments is more widespread in this region than anywhere else on the eastern North Atlantic margin. Regional BSR mapping shows the presence of hydrate and free gas in several areas, with the largest area located north of the Knipovich Ridge, a slow-spreading ridge segment of the Mid Atlantic Ridge system. Here, heat flow is high (up to 330 mW m-2), increasing towards the ridge axis. The coinciding maxima in across-margin BSR width and heat flow suggest that the Knipovich Ridge influenced methane generation in this area. This is supported by recent finds of thermogenic methane at cold seeps north of the ridge termination. To evaluate the source rock potential on the western Svalbard margin, we applied 1D petroleum system modeling at three sites. The modeling shows that temperature and burial conditions near the ridge were sufficient to produce hydrocarbons. The bulk petroleum mass produced since the Eocene is at least 5 kt and could be as high as ~0.2 Mt. Most likely, source rocks are Miocene organic-rich sediments and a potential Eocene source rock that may exist in the area if early rifting created sufficiently deep depocenters. Thermogenic methane production could thus explain the more widespread presence of gas hydrates north of the Knipovich Ridge. The presence of microbial methane on the upper continental slope and shelf indicates that the origin of methane on the Svalbard margin varies spatially.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2023-02-08
    Description: This study proposes a new process‐based framework to characterize and classify runoff events of various magnitudes occurring in a wide range of catchments. The framework uses dimensionless indicators that characterize space–time dynamics of precipitation events and their spatial interaction with antecedent catchment states, described as snow cover, distribution of frozen soils, and soil moisture content. A rigorous uncertainty analysis showed that the developed indicators are robust and regionally consistent. Relying on covariance‐ and ratio‐based indicators leads to reduced classification uncertainty compared to commonly used (event‐based) indicators based on absolute values of metrics such as duration, volume, and intensity of precipitation events. The event typology derived from the proposed framework is able to stratify events that exhibit distinct hydrograph dynamics even if streamflow is not directly used for classification. The derived typology is therefore able to capture first‐order controls of event runoff response in a wide variety of catchments. Application of this typology to about 180,000 runoff events observed in 392 German catchments revealed six distinct regions with homogeneous event type frequency that match well regions with similar behavior in terms of runoff response identified in Germany. The detected seasonal pattern of event type occurrence is regionally consistent and agrees well with the seasonality of hydroclimatic conditions. The proposed framework can be a useful tool for comparative analyses of regional differences and similarities of runoff generation processes at catchment scale and their possible spatial and temporal evolution.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2023-02-08
    Description: The Svalbard margin represents one of the northernmost gas hydrate provinces worldwide. Vestnesa Ridge (VR) and Svyatogor Ridge (SR) west of Svalbard are two prominent sediment drifts showing abundant pockmarks and sites of seismic chimney structures. Some of these sites at VR are associated with active gas venting and were the focus of drilling and coring with the seafloor‐deployed MARUM‐MeBo70 rig. Understanding the nature of fluid migration and gas hydrate distribution requires (amongst other parameters) knowledge of the thermal regime and in situ gas and pore‐fluid composition. In situ temperature data were obtained downhole at a reference site at VR defining a geothermal gradient of ~78 mK m‐1 (heat flow ~95 mW m‐2). Additional heat‐probe data were obtained to describe the thermal regime of the pockmarks. The highest heat flow values were systematically seen within pockmark depressions and were uncorrelated to gas venting occurrences. Heat flow within pockmarks is typically ~20 mW m‐2 higher than outside pockmarks. Using the downhole temperature data and gas compositions from drilling we model the regional base of the gas hydrate stability zone (BGHSZ). Thermal modeling including topographic effects suggest a BGHSZ up to 40 m deeper than estimated from seismic data. Uncertainties in sediment properties (velocity and thermal conductivity) are only partially explaining the mismatch. Capillary effects due to small sediment grain sizes may shift the free gas occurrence above the equilibrium BGHSZ. Changes in gas composition or pore fluid salinity at greater depth may also explain the discrepancy in observed and modeled BGHSZ.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2024-02-07
    Description: This study traces dissolved organic matter (DOM) in different water masses of the Arctic Ocean and its effect on the distributions of trace elements (TEs; Fe, Cu, Mn, Ni, Zn, Cd) using fluorescent properties of DOM and the terrigenous biomarker lignin. The Nansen, Amundsen, and Makarov Basins were characterized by the influence of Atlantic water and the fluvial discharge of the Siberian rivers with high concentrations of terrigenous DOM (tDOM). The Canada Basin and the Chukchi Sea were characterized by Pacific water, modified through contact with productive shelf sediments with elevated levels of marine DOM. Within the surface layer of the Beaufort Gyre, meteoric water (river water and precipitation) was characterized by low concentrations of lignin and terrigenous DOM fluorescence proxies as DOM is removed during freezing. High-resolution in situ fluorescence profiles revealed that DOM distribution closely followed isopycnals, indicating the strong influence of sea-ice formation and melt, which was also reflected in strong correlations between DOM fluorescence and brine contributions. The relationship of DOM and hydrography to TEs showed that terrigenous and marine DOM were likely carriers of dissolved Fe, Ni, Cu from the Eurasian shelves into the central Arctic Ocean. Chukchi shelf sediments were important sources of dCd, dZn, and dNi, as well as marine ligands that bind and carry these TEs offshore within the upper halocline (UHC) in the Canada Basin. Our data suggest that tDOM components represent stronger ligands relative to marine DOM components, potentially facilitating the long-range transport of TE to the North Atlantic. Key Points Dissolved Organic Matter (DOM) distribution in the Arctic Ocean is largely controlled by sea ice formation and melt processes DOM distribution in the Arctic Ocean reveals its potential as a tracer for halocline formation and freshwater source assignments Terrigenous and marine DOM are carriers of trace elements from shelves to the open Arctic Ocean, but terrigenous DOM represent stronger ligands
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2023-03-09
    Description: The Weddell Gyre (WG) is one of the main oceanographic features of the Southern Ocean south of the Antarctic Circumpolar Current which plays an influential role in global ocean circulation as well as gas exchange with the atmosphere. We review the state‐of‐the art knowledge concerning the WG from an interdisciplinary perspective, uncovering critical aspects needed to understand this system's role in shaping the future evolution of oceanic heat and carbon uptake over the next decades. The main limitations in our knowledge are related to the conditions in this extreme and remote environment, where the polar night, very low air temperatures, and presence of sea ice year‐round hamper field and remotely sensed measurements. We highlight the importance of winter and under‐ice conditions in the southern WG, the role that new technology will play to overcome present‐day sampling limitations, the importance of the WG connectivity to the low‐latitude oceans and atmosphere, and the expected intensification of the WG circulation as the westerly winds intensify. Greater international cooperation is needed to define key sampling locations that can be visited by any research vessel in the region. Existing transects sampled since the 1980s along the Prime Meridian and along an East‐West section at ~62°S should be maintained with regularity to provide answers to the relevant questions. This approach will provide long‐term data to determine trends and will improve representation of processes for regional, Antarctic‐wide, and global modeling efforts—thereby enhancing predictions of the WG in global ocean circulation and climate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Earth's Future, 5 (12). pp. 1252-1266.
    Publication Date: 2020-11-23
    Description: The potential of Coastal Ocean Alkalinization (COA), a carbon dioxide removal (CDR) climate engineering strategy that chemically increases ocean carbon uptake and storage, is investigated with an Earth system model of intermediate complexity. The CDR potential and possible environmental side effects are estimated for various COA deployment scenarios, assuming olivine as the alkalinity source in ice-free coastal waters (about 8.6% of the global ocean's surface area), with dissolution rates being a function of grain size, ambient seawater temperature and pH. Our results indicate that for a large-enough olivine deployment of small-enough grain sizes (10 μm), atmospheric CO2 could be reduced by more than 800 GtC by the year 2100. However, COA with coarse olivine grains (1000 μm) has little CO2 sequestration potential on this time scale. Ambitious CDR with fine olivine grains would increase coastal aragonite saturation Ω to levels well beyond those that are currently observed. When imposing upper limits for aragonite saturation levels (Ωlim) in the grid boxes subject to COA (Ωlim = 3.4 and 9 chosen as examples), COA still has the potential to reduce atmospheric CO2 by 265 GtC (Ωlim=3.4) to 790 GtC (Ωlim=9) and increase ocean carbon storage by 290 Gt (Ωlim=3.4) to 913 Gt (Ωlim=9) by year 2100.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2024-02-21
    Description: Accessible seafloor minerals located near mid‐ocean ridges are noticed to mitigate the projected metal demands of the net‐zero energy transition, promoting growing interest in quantifying the global distributions of seafloor massive sulfides (SMS). Mineral potentials are commonly estimated using geophysical and geological data that lastly rely on additional confirmation studies using sparsely available, locally limited, seafloor imagery, grab samples, and coring data. This raises the challenge of linking in situ confirmation data to geophysical data acquired at disparate spatial scales to obtain quantitative mineral predictions. Although multivariate data sets for marine mineral research are incessantly acquired, robust, integrative data analysis requires cumbersome workflows and experienced interpreters. We introduce an automated two‐step machine learning approach that integrates the mound detection through image segmentation with geophysical data. SMS predictors are subsequently clustered into distinct classes to infer marine mineral potentials that help guide future exploration. The automated workflow employs a U‐Net convolutional neural network to identify mound structures in bathymetry data and distinguishes different mound classes through the classification of mound architectures and magnetic signatures. Finally, controlled source electromagnetic data are utilized together with in situ sampling data to reassess predictions of potential SMS volumes. Our study focuses on the Trans‐Atlantic Geotraverse area, which is among the most explored SMS areas worldwide and includes 15 known SMS sites. The automated workflow classifies 14 of the 15 known mounds as exploration targets of either high or medium priority. This reduces the exploration area to less than 7% of the original survey area from 49 to 3.1 km 2 . Key Points A two‐step machine learning workflow identifies mound structures in bathymetry data and classifies their origins based on auxiliary data Significant increase in potential seafloor massive sulfides (SMS) edifices detected within the trans‐Atlantic geo‐traverse hydrothermal field distributed within latitudinal bands SMS mineral potential is likely lower than previously assumed due to heterogeneously distributed mineralization within mounds
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-01-31
    Description: Prediction and Research Moored Array in the Tropical Atlantic (PIRATA) is a multinational program initiated in 1997 in the tropical Atlantic to improve our understanding and ability to predict ocean-atmosphere variability. PIRATA consists of a network of moored buoys providing meteorological and oceanographic data transmitted in real time to address fundamental scientific questions as well as societal needs. The network is maintained through dedicated yearly cruises, which allow for extensive complementary shipboard measurements and provide platforms for deployment of other components of the Tropical Atlantic Observing System. This paper describes network enhancements, scientific accomplishments and successes obtained from the last 10 years of observations, and additional results enabled by cooperation with other national and international programs. Capacity building activities and the role of PIRATA in a future Tropical Atlantic Observing System that is presently being optimized are also described.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2023-02-08
    Description: Climate engineering (CE) measures are increasingly discussed when dealing with the adverse impacts of climate change. While much research has focused on individual methods, few studies attempt to compare and rank the effectiveness of these measures. Furthermore, model uncertainties are seldom acknowledged and lesser still, estimated when CE scenarios are assessed. In this work, we quantify the variance in outcomes due to poorly constrained model parameters under several idealized CE scenarios. The four scenarios considered are (1) warming under the high emission scenario Representative Concentration Pathway 8.5 without CE applied and the same emission scenario with (2) afforestation,(3) solar radiation management, and (4) artificial ocean alkalinization. By considering the parametric uncertainty in model outputs, we demonstrate the problems with comparing these scenarios using a single parameter setting. Using statistical emulation, we estimate the probability distributions of several model outcomes. Based on such distributions, we suggest an approach to ranking the effectiveness of the scenarios considered according to their probability of avoiding climate thresholds.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...