GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-06-14
    Description: Millennial-scale climate change history in eastern Siberia and relationships between diatom diversity, paleoclimate, and sediment-geochemical lake system trajectories are still poorly understood. This study investigates multi-proxy time series reaching back to the Late Pleistocene derived from radiocarbon dated Lake Bolshoe Toko sediment cores, southeastern Yakutia, Russia. We analyzed diatoms, elements (XRF), minerals (XRD), grain-size, organic carbon, and included chironomid analyses and published pollen-data for quantitative paleoclimate reconstruction. Changes in diatom species abundances reveal repeated episodes of thermal stratification indicated by shifts from euplanktonic Aulacoseira to Cyclotella species. Chironomid and pollen-inferred temperature reconstruction reveal that the main shift between these diatom species is related to the onset of Holocene Thermal Maximum (HTM) at 7.1 cal ka BP. Comparison to other paleoclimate records along a north-south transect through Yakutia shows that the HTM was delayed as far south as the Stanovoy mountains. Relationships between sediment-geochemistry, paleoclimate variability and diatom species richness (alpha diversity) was tested in a moving temporal offset approach to detect lead-lag relationships. Sediment-geochemical data, mainly uniform during the Holocene, revealed strongest positive or negative correlations ahead of species richness changes. Mean July air temperature (TJuly) reconstructions correlate with both Hill numbers and relative assemblage changes indicated by sample scores of multidimensional scaling analysis (MDS) over the entire time series. We found that sediment organic carbon revealed distinct positive correlations, i.e., centennial-scale delay to increases in diatom effective richness (Hill numbers N0 and N2). We conclude that a lag of deposited organic carbon concentrations behind changes in diatom alpha diversity reveals that species richness can augment the production and thus sequestration of organic matter in comparable lake systems.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Frontiers
    In:  EPIC3Frontiers in Marine Science, Frontiers, 9(893117)
    Publication Date: 2022-04-25
    Description: Anthropogenic activities are driving rapid changes in aquatic environments. Numerous studies suggest that climatic shifts and anomalies will convey severe consequences for ecosystems worldwide, leading to disruptions in key processes within populations including larval development, individual growth, and reproductive success. This is further exacerbated by the negative impacts on between-species interactions, and changes to biodiversity and ecosystem services (Munday et al., 2013). Understanding the responses of organisms to environmental shifts is imperative to help predict their fate on a changing planet. Particularly, the capacity of individuals and populations to cope through phenotypic plasticity and adaptation is of critical interest, with advances in genomics and epigenomics techniques helping to unveil the underlying molecular mechanisms (Eirin-Lopez and Putnam, 2019). However, major knowledge gaps remain about the adaptive potential of marine organisms to respond to future ocean conditions. The aim of this Research Topic was to bring together novel research approaches that examine acclimation and adaptation processes in marine organisms, their role in population resilience, and implications for geographical distributions and range shifts under rapid climate change. Contributions to the topic span a broad range of taxa, and investigate a diverse array of response mechanisms such as thermal safety margins (Bennett et al.), thermotolerance via endosymbionts and gene expression (Naugle et al.), tolerance via changes in allele frequencies (Knöbel et al.), local adaptation and maternal effects (Richards et al.), transgenerational plasticity (TGP; Chang et al.), environment-dependent reproductive success (Wanzenböck et al.), and phenological shifts to long-term seasonal changes (Xia et al.). Furthermore, the importance of environmental variability (not only mean changes) at different time scales, the role of developmental or life history stage in phenotypic responses, as well as future challenges for plasticity research (both within and across generations) are outlined in Bautista and Crespel.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-01-04
    Description: Species distribution models (SDMs) relate species information to environmental conditions to predict potential species distributions. The majority of SDMs are static, relating species presence information to long-term average environmental conditions. The resulting temporal mismatch between species information and environmental conditions can increase model inference’s uncertainty. For SDMs to capture the dynamic species-environment relationships and predict near-real-time habitat suitability, species information needs to be spatiotemporally matched with environmental conditions contemporaneous to the species’ presence (dynamic SDMs). Implementing dynamic SDMs in the marine realm is highly challenging, particularly due to species and environmental data paucity and spatiotemporally biases. Here, we implemented presence-only dynamic SDMs for four migratory baleen whale species in the Southern Ocean (SO): Antarctic minke, Antarctic blue, fin, and humpback whales. Sightings were spatiotemporally matched with their respective daily environmental predictors. Background information was sampled daily to describe the dynamic environmental conditions in the highly dynamic SO. We corrected for spatial sampling bias by sampling background information respective to the seasonal research efforts. Independent model evaluation was performed on spatial and temporal cross-validation. We predicted the circumantarctic year-round habitat suitability of each species. Daily predictions were also summarized into bi-weekly and monthly habitat suitability. We identified important predictors and species suitability responses to environmental changes. Our results support the propitious use of dynamic SDMs to fill species information gaps and improve conservation planning strategies. Near-real-time predictions can be used for dynamic ocean management, e.g., to examine the overlap between habitat suitability and human activities. Nevertheless, the inevitable spatiotemporal biases in sighting data from the SO call for the need for improving sampling effort in the SO and using alternative data sources (e.g., passive acoustic monitoring) in future SDMs. We further discuss challenges of calibrating dynamic SDMs on baleen whale species in the SO, with a particular focus on spatiotemporal sampling bias issues and how background information should be sampled in presence-only dynamic SDMs. We also highlight the need to integrate visual and acoustic data in future SDMs on baleen whales for better coverage of environmental conditions suitable for the species and avoid constraints of using either data type alone.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-08-19
    Description: Net-zero climate policies foresee deployment of atmospheric carbon dioxide removal wit geological, terrestrial, or marine carbon storage. While terrestrial and geological storage would be governed under the framework of national property rights, marine storage implies that carbon is transferred from one global common, the atmosphere, to another global common, the ocean, in particular if storage exceeds beyond coastal applications. This paper investigates the option of carbon dioxide removal (CDR) and storage in different (marine) reservoir types in an analytic climate-economy model, and derives implications for optimal mitigation efforts and CDR deployment. We show that the introduction of CDR lowers net energy input and net emissions over the entire time path. Furthermore, CDR affects the Social Cost of Carbon (SCC) via changes in total economic output but leaves the analytic structure of the SCC unchanged. In the first years after CDR becomes available the SCC is lower and in later years it is higher compared to a standard climate-economy model. Carbon dioxide emissions are first higher and then lower relative to a world without CDR. The paper provides the basis for the analysis of decentralized and potentially non-cooperative CDR policies.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-04-07
    Description: Nitrogen fixers, or diazotrophs, play a key role in the carbon and nitrogen cycle of the world oceans, but the controlling mechanisms are not comprehensively understood yet. The present study compares two paradigms on the ecological niche of diazotrophs in an Earth System Model (ESM). In our standard model configuration, which is representative for most of the state-of-the-art pelagic ecosystem models, diazotrophs take advantage of zooplankton featuring a lower food preference for diazotrophs than for ordinary phytoplankton. We compare this paradigm with the idea that diazotrophs are more competitive under oligotrophic conditions, characterized by low (dissolved, particulate, organic and inorganic) phosphorous availability. Both paradigms are supported by observational evidence and lead to a similar good agreement to the most recent and advanced observation-based nitrogen fixation estimate in our ESM framework. Further, we illustrate that the similarity between the two paradigms breaks in a RCP 8.5 anthropogenic emission scenario. We conclude that a more advanced understanding of the ecological niche of diazotrophs is mandatory for assessing the cycling of essential nutrients, especially under changing environmental conditions. Our results call for more in-situ measurements of cyanobacteria biomass if major controls of nitrogen fixation in the oceans are to be dissected.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-06-28
    Description: Nitrogen fixers, or diazotrophs, play a key role in the carbon and nitrogen cycle of the world oceans, but the controlling mechanisms are not comprehensively understood yet. The present study compares two paradigms on the ecological niche of diazotrophs in an Earth System Model (ESM). In our standard model configuration, which is representative for most of the state-of-the-art pelagic ecosystem models, diazotrophs take advantage of zooplankton featuring a lower food preference for diazotrophs than for ordinary phytoplankton. We compare this paradigm with the idea that diazotrophs are more competitive under oligotrophic conditions, characterized by low (dissolved, particulate, organic and inorganic) phosphorous availability. Both paradigms are supported by observational evidence and lead to a similar good agreement to the most recent and advanced observation-based nitrogen fixation estimate in our ESM framework. Further, we illustrate that the similarity between the two paradigms breaks in a RCP 8.5 anthropogenic emission scenario. We conclude that a more advanced understanding of the ecological niche of diazotrophs is mandatory for assessing the cycling of essential nutrients, especially under changing environmental conditions. Our results call for more in-situ measurements of cyanobacteria biomass if major controls of nitrogen fixation in the oceans are to be dissected.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-08-19
    Description: This study uses an existing perturbed parameter ensemble (PPE) of simulated ocean CO2 removal (CDR) to better determine sustainable pathways of ocean-based NET deployment and to provide information to constrain the design of subsequent modelling experiments. The results show that ocean alkalinity enhancement (OAE) can only help meet SDG13 (Climate Action) when other ambitious mitigation efforts are taken. This reinforces that OAE is not a substitute for emissions reduction, but could contribute to meeting our climate goals (if other factors suggest OAE is worth doing). For SDG14 (Life Below Water), the results suggest OEA can contribute to limiting or even reversing ocean acidification. Meeting many other SDG14 objectives is closely linked to also meeting SDG13. A key recommendation is therefore, that subsequent simulations in OceanNETs should only use SDG13 compatible baseline scenarios, unless there is some specific need for process understanding at higher levels of climate change. The analysis has also determined that the idealized CDR in the PPE is not suitable for determining many socio-economic constraints and the implications that these have for meeting the SDGs. Another key recommendation is therefore, that subsequent simulations within OceanNETs should use more realistic scenarios of CDR deployment.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-06-09
    Description: Research undertaken in Task 2.2 identified a range of governance challenges to ocean-based NETs related to the global ocean governance framework, e.g., linked to the transboundary nature of the ocean, potential effects of ocean-based NETs on the ocean’s condition and marine ecosystem services, as well as the many unknowns and uncertainties linked to NET-deployment. The fragmented approaches and frameworks in place to govern the global ocean further complicate comprehensive governance of these emerging technologies. This deliverable presents results from a workshop that explored how oceanbased NETs should be governed to best confront these challenges and integrate international climate targets as well as global goals for ocean and biodiversity conservation, in addition to global ambitions towards sustainable development. The workshop is part of research undertaken by Task 2.2 to assess how ocean-based NETs are addressed by the current global ocean governance framework and develop governance scenarios and recommendations to policy makers for a “good governance” of NETs in the ocean.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-11-12
    Description: In this paper we describe the results of an experimental implementation of the recent guidelines issued by the Italian regulatory body for monitoring hydrocarbon production activities. In particular, we report about the pilot study on seismic, deformation, and pore pressure monitoring of the Mirandola hydrocarbon cultivation facility in Northern Italy. This site hosts the Cavone oil field that was speculated of possibly influencing the 2012 ML 5.8 Mirandola earthquake source. According to the guidelines, the monitoring center should analyse geophysical measurements related to seismicity, crustal deformation and pore pressure in quasi real-time (within 24–48 h). A traffic light system would then be used to regulate underground operations in case of detecting significant earthquakes (i.e., events with size and location included in critical ranges). For these 2-year period of guidelines experimentation, we analysed all different kinds of available data, and we tested the existence of possible relationship between their temporal trends. Despite the short time window and the scarce quantity of data collected, we performed the required analysis and extracted as much meaningful and statistically reliable information from the data. We discuss here the most important observations drawn from the monitoring results, and highlight the lessons learned by describing practical issues and limitations that we have encountered in carrying out the tasks as defined in the guidelines. Our main goal is to contribute to the discussion about how to better monitor the geophysical impact of this kind of anthropogenic activity. We point out the importance of a wider seismic network but, mostly, of borehole sensors to improve microseismic detection capabilities. Moreover, the lack of an assessment of background seismicity in an unperturbed situation -due to long life extraction activities- makes it difficult to get a proper picture of natural background seismic activity, which would be instead an essential reference information for a tectonically-active regions, such as Northern Italy.
    Description: “Convenzione tra il comune di San Possidonio e l’Istituto Nazionale di Geofisica e Vulcanologia -I.N.G.V.- per l’attuazione del monitoraggio nella concessione di coltivazione idrocarburi “Mirandola” finalizzata alla messa in opera di attività di monitoraggio di sperimentazione degli indirizzi e linee guida per i monitoraggi ILG ed assunzione funzioni di Struttura Preposta al Monitoraggio di cui all’art. 6 del Protocollo Operativo”
    Description: Published
    Description: 685300
    Description: 3SR TERREMOTI - Attività dei Centri
    Description: JCR Journal
    Keywords: Italian guidelines for monitoring industrial activities ; induced seismicity ; pore pressure monitoring ; deformation monitoring ; seismic monitoring ; 04.06. Seismology ; 05.09. Miscellaneous ; 04.02. Exploration geophysics ; 04.03. Geodesy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-06-17
    Description: Any integration of extra carbon dioxide removal (CDR) via terrestrial or marine sink enhancement into climate policies requires accounting for their effectiveness in reducing atmospheric carbon concentration and translating this information into the amount of carbon credits (to be used in official and voluntary emission trading schemes). Here, we assess accounting schemes in their appropriateness of assigning carbon credits. We discuss the role of temporary carbon storage and present the various ccounting methods for carbon credit assignment. We explain how we have implemented the methods numerically and analyse carbon assignments across the different accounting schemes, using stylized, model-based ocean sink enhancement experiments.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...