GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-02-18
    Description: This assessment report identifies six key areas of sustainable consumption. Transforming those areas is associated with a significant, positive impact on sustainable development. In this way, those key areas lay the foundation to set clear priorities and formulate concrete policy measures and recommendations. The report describes recent developments and relevant actors in those six fields, outlines drivers and barriers to reach a shift towards more sustainability in those specific areas, and explores international good-practice examples. On top of this, overarching topics in the scientific discourse concerning sustainable consumption (e.g. collaborative economy, behavioural economics and nudging) are revealed by using innovative text-mining techniques. Subsequently, the report outlines the contributions of these research approaches to transforming the key areas of sustainable consumption. Finally, the report derives policy recommendations to improve the German Sustainable Development Strategy (DNS) in order to achieve a stronger stimulus effect for sustainable consumption.
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-07
    Description: The Arctic is the region on Earth expected to experience the highest rate of warming caused by climate change. Ocean warming is directly and indirectly decreasing oxygen concentration in the ocean, therewith confronting marine biota with a change of two crucial abiotic factors. Polar cod Boreogadus saida is an Arctic key stone species due to its central position in the food web. In order to contribute to a better understanding of its upper thermal limits and the synergistic effects of warming and decreasing oxygen availability on its metabolic and swimming capacity, Polar cod were acclimated to a temperature hypothesised to belong to its upper thermal limit (10°C) over 10 months. Using static and swim tunnel respirometry 10°C were found to clearly belong to the pejus temperature range of Polar cod although aerobic scope and swimming capacity were maintained at this temperature. No metabolic compensation was observed for standard metabolic rate that increased by a factor of five. A significant PO2 effect on maximum metabolic rate and aerobic scope was observed when measuring metabolic and swimming capacity at decreasing ambient oxygen levels. Polar cod displayed oxy regulation over the whole PO2 range tolerated. Critical velocity stayed stable until 40% ambient O2 saturation whereas gait transition velocity decreased non-significantly at 50% O2. Temperature had a strong negative effect on hypoxia tolerance by increasing Pcmax and Pcrit to 12.53 and 5.22 kPa O2, respectively. We observed that water masses of 10°C can be tolerated in short-term by Polar cod but do not allow for population survival. Hypoxia tolerance was found to be strongly decreased at the long-term incubation temperature but still remained high in inter-species comparison and with respect to 10°C as pejus temperature. Future research should address hypoxia tolerance of Polar cod during acute warming to understand the physiological impacts during marine heatwaves.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Thesis , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-02-18
    Description: Digitalisation is disrupting business practices worldwide and transforming consumption patterns. While a global increase in wealth is leading to higher consumption rates, consumption-related decisions are increasingly based on digital information and marketing; furthermore, shopping increasingly takes place online and products and services are more and more digitalised. The transformative character of digitalisation calls for political action in order to ensure sustainable consumption in a new and dynamically changing context. Focusing on consumption is imperative in combatting many global challenges. Take climate change: consumption-based emissions (i.e. emissions from domestic final consumption and emissions caused by the production of imported goods) are rising more rapidly than production-based emissions in high-income countries. Meanwhile most political measures target production-based emissions (i.e. territorial emissions). The German council for sustainable development (Rat für Nachhaltige Entwicklung) has called for the §principle of sustainable development [to] serve as the political framework for digital transformation" as "digitalisation has the potential to engender disruptive developments in the business world as well as society as a whole that carry both great opportunities and significant risks". Thus, to implement the 2030 Agenda, in particular SDG 12, and the National Program Sustainable Consumption, it is key to seize the opportunities that digitalisation presents for sustainable consumption and tackle the challenges. This assessment report thus examines the following key question: "What are the implications of the digital transformation of consumption patterns for the implementation of the German sustainability strategy in, by and with Germany?"
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Frontiers
    In:  EPIC3Frontiers in Marine Science, Frontiers, 9(893117)
    Publication Date: 2022-04-25
    Description: Anthropogenic activities are driving rapid changes in aquatic environments. Numerous studies suggest that climatic shifts and anomalies will convey severe consequences for ecosystems worldwide, leading to disruptions in key processes within populations including larval development, individual growth, and reproductive success. This is further exacerbated by the negative impacts on between-species interactions, and changes to biodiversity and ecosystem services (Munday et al., 2013). Understanding the responses of organisms to environmental shifts is imperative to help predict their fate on a changing planet. Particularly, the capacity of individuals and populations to cope through phenotypic plasticity and adaptation is of critical interest, with advances in genomics and epigenomics techniques helping to unveil the underlying molecular mechanisms (Eirin-Lopez and Putnam, 2019). However, major knowledge gaps remain about the adaptive potential of marine organisms to respond to future ocean conditions. The aim of this Research Topic was to bring together novel research approaches that examine acclimation and adaptation processes in marine organisms, their role in population resilience, and implications for geographical distributions and range shifts under rapid climate change. Contributions to the topic span a broad range of taxa, and investigate a diverse array of response mechanisms such as thermal safety margins (Bennett et al.), thermotolerance via endosymbionts and gene expression (Naugle et al.), tolerance via changes in allele frequencies (Knöbel et al.), local adaptation and maternal effects (Richards et al.), transgenerational plasticity (TGP; Chang et al.), environment-dependent reproductive success (Wanzenböck et al.), and phenological shifts to long-term seasonal changes (Xia et al.). Furthermore, the importance of environmental variability (not only mean changes) at different time scales, the role of developmental or life history stage in phenotypic responses, as well as future challenges for plasticity research (both within and across generations) are outlined in Bautista and Crespel.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-01-04
    Description: Species distribution models (SDMs) relate species information to environmental conditions to predict potential species distributions. The majority of SDMs are static, relating species presence information to long-term average environmental conditions. The resulting temporal mismatch between species information and environmental conditions can increase model inference’s uncertainty. For SDMs to capture the dynamic species-environment relationships and predict near-real-time habitat suitability, species information needs to be spatiotemporally matched with environmental conditions contemporaneous to the species’ presence (dynamic SDMs). Implementing dynamic SDMs in the marine realm is highly challenging, particularly due to species and environmental data paucity and spatiotemporally biases. Here, we implemented presence-only dynamic SDMs for four migratory baleen whale species in the Southern Ocean (SO): Antarctic minke, Antarctic blue, fin, and humpback whales. Sightings were spatiotemporally matched with their respective daily environmental predictors. Background information was sampled daily to describe the dynamic environmental conditions in the highly dynamic SO. We corrected for spatial sampling bias by sampling background information respective to the seasonal research efforts. Independent model evaluation was performed on spatial and temporal cross-validation. We predicted the circumantarctic year-round habitat suitability of each species. Daily predictions were also summarized into bi-weekly and monthly habitat suitability. We identified important predictors and species suitability responses to environmental changes. Our results support the propitious use of dynamic SDMs to fill species information gaps and improve conservation planning strategies. Near-real-time predictions can be used for dynamic ocean management, e.g., to examine the overlap between habitat suitability and human activities. Nevertheless, the inevitable spatiotemporal biases in sighting data from the SO call for the need for improving sampling effort in the SO and using alternative data sources (e.g., passive acoustic monitoring) in future SDMs. We further discuss challenges of calibrating dynamic SDMs on baleen whale species in the SO, with a particular focus on spatiotemporal sampling bias issues and how background information should be sampled in presence-only dynamic SDMs. We also highlight the need to integrate visual and acoustic data in future SDMs on baleen whales for better coverage of environmental conditions suitable for the species and avoid constraints of using either data type alone.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    University of Bremen
    In:  EPIC3University of Bremen, 141 p.
    Publication Date: 2022-10-20
    Description: The climate in the summer months is essential for ecosystems and society. However, climate change is causing lasting changes in the characteristics of the summer climate. In order to better understand the summer climate, to capture changes in a statistically meaningful way and to develop climate sce- narios for the future, long-term climate observations and reliable climate models are needed. These three points are addressed in this thesis with the help of three main research questions. The first question examines the prevailing large-scale climate patterns which are elaborated using the climate signature of the oxygen isotope ratio in tree ring cellulose (δ18Ocel) over the past 400 years. An empirical orthogonal function analysis reveals two different modes of variability. The first mode is related to multi-seasonal anomaly patterns associated with the El Niño-Southern Oscillation. The second mode of δ18Ocel variability, which captures a north-south dipole, is associated with a regional summer atmospheric circulation pattern that has a distinct centre over the North Sea. To further exploit the climate sensitivity of δ18Ocel tree-ring records, the first grid-based reconstruc- tion of the European summer vapour pressure deficit (VPD) for the last four centuries is presented. This reconstruction is used to answer the second question of what trends in VPD have occurred in Europe over the last 400 years. The simultaneous increase in temperature and decrease in precipita- tion starts from mid-17th century in Central Europe and the Mediterranean region and relates to a positive VPD trend. This trend towards higher VPD continues throughout the observation period. In addition to studying the past summer climate with the help of a tree ring network, climate models provide valuable information on future scenarios which are highly relevant for society and ecosys- tems. Therefore, this thesis addresses the question of whether simulations with different climate models from a climate model comparison project are suitable for making reliable statements about future drought conditions and what influence the amount of greenhouse gases has on drought oc- currence. Based on a comparison between simulated and observed drought conditions for the period 1971-2000, reasonable agreement can be found between climate model simulations and the observa- tions. However, climate models cannot reproduce drought trends in observations for recent decades for large parts of the Northern Hemisphere. Furthermore, it is shown that drought occurrence is projected to increase significantly in arid regions under three different future scenarios, with the se- verity of droughts depending on greenhouse gas emissions. For regions currently less affected by prolonged droughts, such as the European continent, the climate models show that the probability of drought occurrence increases significantly under the warmest future scenario. Thus, this thesis presents new perspectives on past, present and future European summer climate using a δ18Ocel tree ring network, climate observations and climate model simulations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Thesis , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-11-12
    Description: In this paper we describe the results of an experimental implementation of the recent guidelines issued by the Italian regulatory body for monitoring hydrocarbon production activities. In particular, we report about the pilot study on seismic, deformation, and pore pressure monitoring of the Mirandola hydrocarbon cultivation facility in Northern Italy. This site hosts the Cavone oil field that was speculated of possibly influencing the 2012 ML 5.8 Mirandola earthquake source. According to the guidelines, the monitoring center should analyse geophysical measurements related to seismicity, crustal deformation and pore pressure in quasi real-time (within 24–48 h). A traffic light system would then be used to regulate underground operations in case of detecting significant earthquakes (i.e., events with size and location included in critical ranges). For these 2-year period of guidelines experimentation, we analysed all different kinds of available data, and we tested the existence of possible relationship between their temporal trends. Despite the short time window and the scarce quantity of data collected, we performed the required analysis and extracted as much meaningful and statistically reliable information from the data. We discuss here the most important observations drawn from the monitoring results, and highlight the lessons learned by describing practical issues and limitations that we have encountered in carrying out the tasks as defined in the guidelines. Our main goal is to contribute to the discussion about how to better monitor the geophysical impact of this kind of anthropogenic activity. We point out the importance of a wider seismic network but, mostly, of borehole sensors to improve microseismic detection capabilities. Moreover, the lack of an assessment of background seismicity in an unperturbed situation -due to long life extraction activities- makes it difficult to get a proper picture of natural background seismic activity, which would be instead an essential reference information for a tectonically-active regions, such as Northern Italy.
    Description: “Convenzione tra il comune di San Possidonio e l’Istituto Nazionale di Geofisica e Vulcanologia -I.N.G.V.- per l’attuazione del monitoraggio nella concessione di coltivazione idrocarburi “Mirandola” finalizzata alla messa in opera di attività di monitoraggio di sperimentazione degli indirizzi e linee guida per i monitoraggi ILG ed assunzione funzioni di Struttura Preposta al Monitoraggio di cui all’art. 6 del Protocollo Operativo”
    Description: Published
    Description: 685300
    Description: 3SR TERREMOTI - Attività dei Centri
    Description: JCR Journal
    Keywords: Italian guidelines for monitoring industrial activities ; induced seismicity ; pore pressure monitoring ; deformation monitoring ; seismic monitoring ; 04.06. Seismology ; 05.09. Miscellaneous ; 04.02. Exploration geophysics ; 04.03. Geodesy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...