GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ddc:600  (65)
  • 2020-2024  (21)
  • 2020-2023  (25)
  • 2020-2022  (19)
Document type
Language
Years
Year
  • 1
    Publication Date: 2022-04-14
    Description: Technological breakthroughs and policy measures targeting energy efficiency and clean energy alone will not suffice to deliver Paris Agreement-compliant greenhouse gas emissions trajectories in the next decades. Strong cases have recently been made for acknowledging the decarbonisation potential lying in transforming linear economic models into closed-loop industrial ecosystems and in shifting lifestyle patterns towards this direction. This perspective highlights the research capacity needed to inform on the role and potential of the circular economy for climate change mitigation and to enhance the scientific capabilities to quantitatively explore their synergies and trade-offs. This begins with establishing conceptual and methodological bridges amongst the relevant and currently fragmented research communities, thereby allowing an interdisciplinary integration and assessment of circularity, decarbonisation, and sustainable development. Following similar calls for science in support of climate action, a transdisciplinary scientific agenda is needed to co-create the goals and scientific processes underpinning the transition pathways towards a circular, net-zero economy with representatives from policy, industry, and civil society. Here, it is argued that such integration of disciplines, methods, and communities can then lead to new and/or structurally enhanced quantitative systems models that better represent critical industrial value chains, consumption patterns, and mitigation technologies. This will be a crucial advancement towards assessing the material implications of, and the contribution of enhanced circularity performance to, mitigation pathways that are compatible with the temperature goals of the Paris Agreement and the transition to a circular economy.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-02-18
    Description: This paper analyses and compares industry sector transformation strategies as envisioned in recent German, European and global deep decarbonisation scenarios. The first part of the paper identifies and categorises ten key strategies for deep emission reductions in the industry sector. These ten key strategies are energy efficiency, direct electrification, use of climateneutral hydrogen and/or synthetic fuels, use of biomass, use of CCS, use of CCU, increases in material efficiency, circular economy, material substitution and end-use demand reductions. The second part of the paper presents a meta-analysis of selected scenarios, focusing on the question of which scenario relies to what extent on the respective mitigation strategies. The key findings of the meta-analysis are discussed, with an emphasis on identifying those strategies that are commonly pursued in all or the vast majority of the scenarios and those strategies that are only pursued in a limited number of the scenarios. Possible reasons for differences in the choice of strategies are investigated. The paper concludes by deriving key insights from the analysis, including identifying the main uncertainties that are still apparent with regard to the future steps necessary to achieve deep emission reductions in the industry sector and how future research can address these uncertainties.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-05-18
    Description: Electricity generation requires water. With the global demand for electricity expected to increase significantly in the coming decades, the water demand in the power sector is also expected to rise. However, due to the ongoing global energy transition, the future structure of the power supply - and hence future water demand for power generation - is subject to high levels of uncertainty, because the volume of water required for electricity generation varies significantly depending on both the generation technology and the cooling system. This study shows the implications of ambitious decarbonization strategies for the direct water demand for electricity generation. To this end, water demand scenarios for the electricity sector are developed based on selected global energy scenario studies to systematically analyze the impact up to 2040. The results show that different decarbonization strategies for the electricity sector can lead to a huge variation in water needs. Reducing greenhouse gas emissions (GHG) does not necessarily lead to a reduction in water demand. These findings emphasize the need to take into account not only GHG emission reductions, but also such aspects as water requirements of future energy systems, both at the regional and global levels, in order to achieve a sustainable energy transition.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-05-23
    Description: The steel industry is responsible for eight per cent of global CO2 emissions. As more than seven out of ten of today's coal-fired blast furnaces are due to be refurbished or replaced in the 2020s, there is a key window of opportunity to shift to low-emission production methods before the end of this decade. The analysis by Agora Industry, Wuppertal Institute and Lund University assesses eight potential breakthrough technologies in terms of their market readiness, cost and impact on emissions. The methods analysed include the use of hydrogen to produce direct reduced iron, scrap-based electric arc furnaces, electrolysis and the implementation of carbon capture in existing coal-fired facilities. While some of these technologies can already be deployed today to kick-start the market for green steel, others will take more time to reach technological maturity, but show promise in the long-term. A third group may never turn into adequate solutions for decarbonising the steel sector. In their analysis, the scientists conclude that scrap and hydrogen-based methods hold the biggest promise for companies aiming to make the switch this decade. By contrast, retrofitting existing coal-based facilities with carbon capture and storage (CCS) technology entails the biggest economic and environmental risk, the authors find. Regardless of the technologies chosen, appropriate regulatory frameworks, international cooperation, and targeted incentives are necessary to boost demand for green steel and promote its production. At the same time, such measures can help steer manufacturers away from costly technological dependencies.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-05-18
    Description: The earth's capacity to absorb greenhouse gases is ultimately a critical limiting factor in the handling of metals. The fact that the demand for metals far exceeds their secondary production is extremely problematic at this point. Nevertheless, metals are crucial for climate protection and energy system transformation. Examples are the rare earth metal neodymium used in high-performance permanent magnets in wind turbines, the alkali metal lithium as the most important component in batteries, or the metal tellurium used in thin-film solar cells to generate solar power. It is therefore essential to promote the aspects of resource efficiency and to strengthen the critical role of metals in national and European policy programs. Next to a global solution, a European solo effort with predominantly market-based instruments and the effects of committed behaviour by civil society in the European Union (EU), show that the EU can make a considerable contribution to sustainable development on its own. Thus, a comprehensive approach is needed for sustainable metal management in the sense of a circular economy on the European level fostering sustainable production and consumption pathways. But, this need and the special role of metals are not seen in the current debate about resources in society and politics. Due to the fact that in public perception, metallic raw materials are often discussed as less urgent than energy or polymer raw materials, this article aims to highlight the critical role of metals. Further, the objective of this contribution is to show which prerequisites exist for the development and establishment of a holistic metal management and where political strategies have to start. Challenges needed to be overcome to achieve such a holistic metal strategy and management are highlighted. In particular, the role of the metal industry, circular product design and labelling and corresponding indicator systems is examined. In addition, the special role of digitalisation is being worked out. Finally, conclusions are drawn and shown which aspects have to be considered for a holistic metal strategy and management.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: bookpart , doc-type:bookPart
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-02-18
    Description: Organic waste to energy (OWtE) technologies have been developed and implemented in Latin America and the Caribbean (LAC) countries. However, they are still far away to significantly contribute not only to treat the ever-increasing waste volumes in the region but also to supply the regional energy demand and meet national carbon emission goals. The technical complexity of these technologies aligned with lack of research, high investment costs and political deficiencies have not allowed for an appropriate implementation of OWtE in the region, where the applicability of large-scale plants remains to be demonstrated. This research presents the state-of-the art of OWtE technologies in the context of the LAC countries based on archival research method. In addition, it presents challenges and opportunities that the region is facing for an adequate implementation of these technologies. The main findings show that OWtE have the potential to improve waste and energy systems in the region by reducing environmental impacts along with a series of social and economic benefits, such as increasing access to a sustainable energy supply. Diverse researches indicate principally anaerobic digestion, fermentation (e.g. 2G bioethanol, etc.), microbial fuel cells, gasification and pyrolysis as efficient technologies to treat solid organic wastes and produce bioenergy.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-05-10
    Description: Nowadays, high expectations are set for a digitally enabled circular economy (CE), to enhance resource efficiency. Tracing, tracking, and storing information is most important for this. In this paper, the application of Internet of Things (IoT) and Distributed Ledger Technology (Blockchain) are hence discussed by presenting the case of professional Electrical and Electronic Equipment (EEE) in Italy. Within the context of CE, prevention of electronic waste (WEEE) is extremely relevant as it is a fast-growing waste stream, and the products contain environmentally damaging substances as well as valuable and rare materials. The use of a proper combination of IoT and blockchain can help the producers to keep control on products until EEE end-of-life, while promoting CE strategies and supporting decision-making. Based on the outcomes of five interviews conducted in 2019 to companies of the EEE sector, potential improvements in the EEE end-of-use management are discussed. After providing the definition of requirements for both the technical solution and its testing are provided, three solution variations and the related business models are created and presented, as well as considerations on their environmental and economic impacts. The study shows how digital technologies can support the appropriate and circular management of EEE products and WEEE.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-05-06
    Description: Every diet has an impact on an individual’s health status, the environment, as well as on social concerns. A growing number of meals are consumed in the out-of-home catering sector, in which a systematic sustainability assessment is not part of common practice. In order to close this gap, an instrument was developed as part of the NAHGAST project. After more than one year of using the NAHGAST online tool, it needs to be assessed what positive environmental influences can be realized by using the tool. For this reason, this article deals with the question of whether an online tool can enable stakeholders from the out-of-home consumption sector to revise their meals with regard to aspects of a sustainable diet. In addition, it will be answered how precise recipe revisions of the most popular lunchtime meals influence the material footprint as well as the carbon footprint. In conclusion, an online tool can illustrate individual sustainability paths for stakeholders in the out-of-home consumption sector and enables an independent recipe revision for already existing meals. The results show that even slight changes in recipes could lead to savings of up to a third in carbon footprint as well as in material footprint. In relation to the out-of-home consumption sector, this results in the potential for substantial multiplication effects that will pave the way for the dissemination of sustainable nutrition.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-05-18
    Description: We conduct a systematic, interdisciplinary review of empirical literature assessing evidence on induced innovation in energy and related technologies. We explore links between demand-drivers (both market-wide and targeted); indicators of innovation (principally, patents); and outcomes (cost reduction, efficiency, and multi-sector/macro consequences). We build on existing reviews in different fields and assess over 200 papers containing original data analysis. Papers linking drivers to patents, and indicators of cumulative capacity to cost reductions (experience curves), dominate the literature. The former does not directly link patents to outcomes; the latter does not directly test for the causal impact of on cost reductions). Diverse other literatures provide additional evidence concerning the links between deployment, innovation activities, and outcomes. We derive three main conclusions. (1) Demand-pull forces enhance patenting; econometric studies find positive impacts in industry, electricity and transport sectors in all but a few specific cases. This applies to all drivers - general energy prices, carbon prices, and targeted interventions that build markets. (2) Technology costs decline with cumulative investment for almost every technology studied across all time periods, when controlled for other factors. Numerous lines of evidence point to dominant causality from at-scale deployment (prior to self-sustaining diffusion) to cost reduction in this relationship. (3) Overall Innovation is cumulative, multi-faceted, and self-reinforcing in its direction (path-dependent). We conclude with brief observations on implications for modeling and policy. In interpreting these results, we suggest distinguishing the economics of active deployment, from more passive diffusion processes, and draw the following implications. There is a role for policy diversity and experimentation, with evaluation of potential gains from innovation in the broadest sense. Consequently, endogenising innovation in large-scale models is important for deriving policy-relevant conclusions. Finally, seeking to relate quantitative economic evaluation to the qualitative socio-technical transitions literatures could be a fruitful area for future research.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-05-18
    Description: Roadmaps for India's energy future foresee that coal power will continue to play a considerable role until the middle of the 21st century. Among other options, carbon capture and storage (CCS) is being considered as a potential technology for decarbonising the power sector. Consequently, it is important to quantify the relative benefits and trade-offs of coal-CCS in comparison to its competing renewable power sources from multiple sustainability perspectives. In this paper, we assess coal-CCS pathways in India up to 2050 and compare coal-CCS with conventional coal, solar PV and wind power sources through an integrated assessment approach coupled with a nexus perspective (energy-cost-climate-water nexus). Our levelized costs assessment reveals that coal-CCS is expensive and significant cost reductions would be needed for CCS to compete in the Indian power market. In addition, although carbon pricing could make coal-CCS competitive in relation to conventional coal power plants, it cannot influence the lack of competitiveness of coal-CCS with respect to renewables. From a climate perspective, CCS can significantly reduce the life cycle GHG emissions of conventional coal power plants, but renewables are better positioned than coal-CCS if the goal is ambitious climate change mitigation. Our water footprint assessment reveals that coal-CCS consumes an enormous volume of water resources in comparison to conventional coal and, in particular, to renewables. To conclude, our findings highlight that coal-CCS not only suffers from typical new technology development related challenges - such as a lack of technical potential assessments and necessary support infrastructure, and high costs - but also from severe resource constraints (especially water) in an era of global warming and the competition from outperforming renewable power sources. Our study, therefore, adds a considerable level of techno-economic and environmental nexus specificity to the current debate about coal-based large-scale CCS and the low carbon energy transition in emerging and developing economies in the Global South.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Format: application/pdf
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...