GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 05.09. Miscellaneous  (1)
  • Benthic cover  (1)
  • ddc:380
  • 2020-2024  (2)
  • 2024  (2)
Document type
Publisher
Years
  • 2020-2024  (2)
Year
  • 1
    Publication Date: 2024-04-24
    Description: Groundwater is a vital resource for humans, non-human species, and ecosystems. It has allowed the development of human evolution and civilizations throughout history (e.g., Wittfogel 1956, Tempelhoff et al. 2009, Cuthbert and Ashley 2014, Roberts 2014). However, it faces multiple potential threats that make it vulnerable and fragile. Climate change and human activities are the primary causes that have led to water cycle disruptions, particularly a decline in groundwater quality and quantity (e.g., Gleeson et al. 2020, Chaminé et al. 2022, Richardson et al. 2023). Climate variability has induced droughts, floods, and other extreme weather conditions, significantly impacting groundwater in many regions. Meanwhile, human activities such as over-abstraction, ground contamination, deforestation, land-use change, and other anthropogenic pressures have further compromised groundwater status. Nonetheless, groundwater continues to fulfill water demands in many regions or during specific periods. Therefore, concerted efforts are imperative to ensure its sustainability. So, conservation practices and nature-based solutions must be adopted to efficiently manage groundwater and shield it from additional potential hazards or risks (e.g., contamination, pollution, or over-abstraction). Failure to act quickly can result in the loss of this critical resource, with severe consequences for the economy, society, and ecosystems. From this perspective, it is imperative to prioritize actions underscored by technical-scientific integrity, environmental responsibility, societal sensitivity, and ethical practices.
    Description: Published
    Description: 97
    Description: OS: Terza missione
    Description: OSA5: Energia e georisorse
    Description: JCR Journal
    Keywords: groundwater ; resource management ; sustainability ; hydrogeoethics ; geoethics ; societal well-being ; 05.03. Educational, History of Science, Public Issues ; 03.02. Hydrology ; 04.04. Geology ; 05.09. Miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-05-11
    Description: Tropical coastal benthic communities will change in species composition and relative dominance due to global (e.g., increasing water temperature) and local (e.g., increasing terrestrial influence due to land-based activity) stressors. This study aimed to gain insight into possible trajectories of coastal benthic assemblages in Raja Ampat, Indonesia, by studying coral reefs at varying distances from human activities and marine lakes with high turbidity in three temperature categories (〈31 °C, 31–32 °C, and 〉32 °C). The benthic community diversity and relative coverage of major benthic groups were quantified via replicate photo transects. The composition of benthic assemblages varied significantly among the reef and marine lake habitats. The marine lakes 〈31 °C contained hard coral, crustose coralline algae (CCA), and turf algae with coverages similar to those found in the coral reefs (17.4–18.8% hard coral, 3.5–26.3% CCA, and 15–15.5% turf algae, respectively), while the higher temperature marine lakes (31–32 °C and 〉32 °C) did not harbor hard coral or CCA. Benthic composition in the reefs was significantly influenced by geographic distance among sites but not by human activity or depth. Benthic composition in the marine lakes appeared to be structured by temperature, salinity, and degree of connection to the adjacent sea. Our results suggest that beyond a certain temperature (〉31 °C), benthic communities shift away from coral dominance, but new outcomes of assemblages can be highly distinct, with a possible varied dominance of macroalgae, benthic cyanobacterial mats, or filter feeders such as bivalves and tubeworms. This study illustrates the possible use of marine lake model systems to gain insight into shifts in the benthic community structure of tropical coastal ecosystems if hard corals are no longer dominant.
    Keywords: Benthic cover ; Biodiversity ; Coral reef ; Marine lake ; Anthropogenic pressures ; Raja ; Ampat (Indonesia)
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...