GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Naturalis Biodiversity Center
    In:  Persoonia - Molecular Phylogeny and Evolution of Fungi vol. 47, pp. 45-105
    Publication Date: 2024-04-09
    Description: The current list of Chinese quarantine pests includes 130 fungal species. However, recent changes in the taxonomy of fungi following the one fungus = one name initiative and the implementation of DNA phylogeny in taxonomic revisions, resulted in many changes of these species names, necessitating an update of the current list. In addition, many quarantine fungi lack modern morphological descriptions and authentic DNA sequences, posing significant challenges for the development of diagnostic protocols. The aim of the present study was to review the taxonomy and names of the 33 Chinese quarantine fungi in Dothideomycetes, and provide reliable DNA barcodes to facilitate rapid identification. Of these, 23 names were updated according to the single name nomenclature system, including one new combination, namely Cophinforma tumefaciens comb. nov. (syn. Sphaeropsis tumefaciens). On the basis of phylogenetic analyses and morphological comparisons, a new genus Xenosphaeropsis is introduced to accommodate the monotypic species Xenosphaeropsis pyriputrescens comb. nov. (syn. Sphaeropsis pyriputrescens), the causal agent of a post-harvest disease of pears. Furthermore, four lectotypes (Ascochyta petroselini, Mycosphaerella ligulicola, Physalospora laricina, Sphaeria lingam), three epitypes (Ascochyta petroselini, Phoma lycopersici, Sphaeria lingam), and two neotypes (Ascochyta pinodella, Deuterophoma tracheiphila) are designated to stabilise the use of these names. A further four reference strains are introduced for Cophinforma tumefaciens, Helminthosporium solani, Mycocentro spora acerina, and Septoria linicola. In addition, to assist future studies on these important pathogens, we sequenced and assembled whole genomes for 17 species, including Alternaria triticina, Boeremia foveata, B. lycopersici, Cladosporium cucumerinum, Didymella glomerata, Didymella pinodella, Diplodia mutila, Helminthosporium solani, Mycocentrospora acerina, Neofusicoccum laricinum, Parastagonospora pseudonodorum, Plenodomus libanotidis, Plenodomus lingam, Plenodomus tracheiphilus, Septoria petroselini, Stagonosporopsis chrysanthemi, and Xenosphaeropsis pyriputrescens.
    Keywords: Ecology ; Evolution ; Behavior and Systematics ; Chinese quarantine fungi ; DNA barcodes ; genomes ; morphology ; new taxa ; phylogeny ; plant pathogens ; typification
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-01-12
    Description: Freshwater is an important resource, but at a great risk of species decline due to habitat loss, pollution and over-exploitation, and invasive alien species. European and national regulation dictate the monitoring of freshwater quality in the Water Framework Directive. The biological elements of these assessments focus on the organisms living in freshwater systems, such as fish, macroinvertebrates, and plants. Traditional monitoring of quality relies on labor-intensive and expensive collection and morphological identification of specimens. Recent developments in molecular techniques allow for easier identification through (meta)barcoding and species detection using environmental DNA (eDNA). This thesis explores the possibilities to integrate genetic tools into freshwater quality monitoring and impact assessments, by investigating the ability of DNA-based methods to approximate morphologically determined species occurrences and the influence of their abundance on quality ratios. Additionally, it examines the effects of replication strategies in eDNA sampling, and studies the implications of using eDNA monitoring across several trophic levels of the ecosystem in impact assessments. Combined with a growing body of literature, the findings in this thesis illustrate that molecular techniques will contribute to a better ecosystem understanding and allow for more effective monitoring and management of freshwater systems, safeguarding the ecosystem services provided to humankind.
    Keywords: DNA BARCODING ; DNA METABARCODING ; ECOTOXICOLOGY ; ENVIRONMENTAL DNA ; FRESHWATER ; IMPACT ASSESSMENT ; INDICATOR SPECIES ; MACROFAUNA
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/doctoralThesis
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...