GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-02-08
    Description: Considerable effort is being deployed to predict the impacts of climate change and anthropogenic activities on the ocean's biophysical environment, biodiversity, and natural resources to better understand how marine ecosystems and provided services to humans are likely to change and explore alternative pathways and options. We present an updated version of EcoOcean (v2), a spatial-temporal ecosystem modeling complex of the global ocean that spans food-web dynamics from primary producers to top predators. Advancements include an enhanced ability to reproduce spatial-temporal ecosystem dynamics by linking species productivity, distributions, and trophic interactions to the impacts of climate change and worldwide fisheries. The updated modeling platform is used to simulate past and future scenarios of change, where we quantify the impacts of alternative configurations of the ecological model, responses to climate-change scenarios, and the additional impacts of fishing. Climate-change scenarios are obtained from two Earth-System Models (ESMs, GFDL-ESM2M, and IPSL-CMA5-LR) and two contrasting emission pathways (RCPs 2.6 and 8.5) for historical (1950-2005) and future (2006-2100) periods. Standardized ecological indicators and biomasses of selected species groups are used to compare simulations. Results show how future ecological trajectories are sensitive to alternative configurations of EcoOcean, and yield moderate differences when looking at ecological indicators and larger differences for biomasses of species groups. Ecological trajectories are also sensitive to environmental drivers from alternative ESM outputs and RCPs, and show spatial variability and more severe changes when IPSL and RCP 8.5 are used. Under a non-fishing configuration, larger organisms show decreasing trends, while smaller organisms show mixed or increasing results. Fishing intensifies the negative effects predicted by climate change, again stronger under IPSL and RCP 8.5, which results in stronger biomass declines for species already losing under climate change, or dampened positive impacts for those increasing. Several species groups that win under climate change become losers under combined impacts, while only a few (small benthopelagic fish and cephalopods) species are projected to show positive biomass changes under cumulative impacts. EcoOcean v2 can contribute to the quantification of cumulative impact assessments of multiple stressors and of plausible ocean-based solutions to prevent, mitigate and adapt to global change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: Marine organisms produce a vast diversity of metabolites with biological activities useful for humans, e.g., cytotoxic, antioxidant, anti-microbial, insecticidal, herbicidal, anticancer, pro-osteogenic and pro-regenerative, analgesic, anti-inflammatory, anticoagulant, cholesterol-lowering, nutritional, photoprotective, horticultural or other beneficial properties. These metabolites could help satisfy the increasing demand for alternative sources of nutraceuticals, pharmaceuticals, cosmeceuticals, food, feed, and novel bio-based products. In addition, marine biomass itself can serve as the source material for the production of various bulk commodities (e.g., biofuels, bioplastics, biomaterials). The sustainable exploitation of marine bio-resources and the development of biomolecules and polymers are also known as the growing field of marine biotechnology. Up to now, over 35,000 natural products have been characterized from marine organisms, but many more are yet to be uncovered, as the vast diversity of biota in the marine systems remains largely unexplored. Since marine biotechnology is still in its infancy, there is a need to create effective, operational, inclusive, sustainable, transnational and transdisciplinary networks with a serious and ambitious commitment for knowledge transfer, training provision, dissemination of best practices and identification of the emerging technological trends through science communication activities. A collaborative (net)work is today compelling to provide innovative solutions and products that can be commercialized to contribute to the circular bioeconomy. This perspective article highlights the importance of establishing such collaborative frameworks using the example of Ocean4Biotech, an Action within the European Cooperation in Science and Technology (COST) that connects all and any stakeholders with an interest in marine biotechnology in Europe and beyond.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: The temperate seagrass species eelgrass Zostera marina can be infected by the wasting disease pathogen Labyrinthula zosterae, which is believed to have killed about 90% of the seagrass in the Atlantic Ocean in the 1930s. It is not known why this opportunistic pathogen sometimes becomes virulent, but the recurrent outbreaks may be due to a weakening of the Z. marina plants from adverse environmental changes. This study investigated the individual and interactive effects of multiple extrinsic factors (temperature, light, and tissue damage) on the host-pathogen interaction between Z. marina and L. zosterae in a fully crossed infection experiment. The degree of infection was measured as both lesion coverage and L. zosterae cell concentration. We also investigated if the treatment factors affect the chemical defense of the host, measured as the inhibitory capacity of seagrass extracts in bioassays with L. zosterae. Finally, gene expression of a set of targeted genes was quantified in order to investigate how the treatments change Z. marina’s response to infection. Light had a pronounced effect on L. zosterae infection measured as lesion coverage, where reduced light conditions increased lesions by 35%. The response to light on L. zosterae cell concentration was more complex and showed significant interaction with the temperature treatment. Cell concentration was also significantly affected by physical damage, where damage surprisingly resulted in a reduced cell concentration of the pathogen. No treatment factor caused detectable decrease in the inhibitory capacity of the seagrass extracts. There were several interactive effects between L. zosterae infection and the treatment factors on Z. marina growth, and on the expression of genes associated with immune defense, phenol synthesis and primary metabolism, showing that the molecular reaction toward L. zosterae infection depends on prevailing environmental conditions. Our study shows that individual or interactive effects of light, temperature and tissue damage can affect multiple aspects of host-pathogen interactions in seagrasses. These results highlight the complexity of marine host-pathogen systems, showing that more multi-factorial investigations are needed to gain a better understanding of disease in marine plants under different environmental conditions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-02-08
    Description: The establishment of epibacterial communities is fundamental to seaweed health and fitness, in modulating ecological interactions and may also facilitate adaptation to new environments. Abiotic factors like salinity can determine bacterial abundance, growth and community composition. However, influence of salinity as a driver of epibacterial community composition (until species level) has not been investigated for seaweeds and especially under long time scales. We also do not know how abiotic stressors may influence the ‘core’ bacterial species of seaweeds. Following an initial (immediately after field collection) sampling of epibacterial community of an invasive red seaweed Agarophyton vermicullophylum, we conducted a long term mesocosm experiment for 5 months, to examine the influence of three different salinities (low, medium and high) at two different time points (3 months after start of experiment and 5 months, i.e., at the end of experiment) on the epibacterial community richness and composition of Agarophyton. Metagenomic sequencing showed that epibacterial communities changed significantly according to salinity and time points sampled. Epibacterial richness was significantly different between low and high salinities at both time points. Epibacterial richness also varied significantly between 3 months (after start of experiment) and 5 months (end of experiment) within low, medium and high salinity level. Irrespective of salinity levels and time points sampled 727 taxa consistently appeared in all Agarophyton samples hinting at the presence of core bacterial species on the surface of the alga. Our results indicate that both salinity and time can be major driving forces in structuring epibacterial communities of seaweeds with respect to richness and β-diversity. We highlight the necessity of conducting long term experiments allowing us to detect and understand epibacterial succession over time on seaweeds.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-08
    Description: Continental slopes – steep regions between the shelf break and abyssal ocean – play key roles in the climatology and ecology of the Arctic Ocean. Here, through review and synthesis, we find that the narrow slope regions contribute to ecosystem functioning disproportionately to the size of the habitat area (∼6% of total Arctic Ocean area). Driven by inflows of sub-Arctic waters and steered by topography, boundary currents transport boreal properties and particle loads from the Atlantic and Pacific Oceans along-slope, thus creating both along and cross-slope connectivity gradients in water mass properties and biomass. Drainage of dense, saline shelf water and material within these, and contributions of river and meltwater also shape the characteristics of the slope domain. These and other properties led us to distinguish upper and lower slope domains; the upper slope (shelf break to ∼800 m) is characterized by stronger currents, warmer sub-surface temperatures, and higher biomass across several trophic levels (especially near inflow areas). In contrast, the lower slope has slower-moving currents, is cooler, and exhibits lower vertical carbon flux and biomass. Distinct zonation of zooplankton, benthic and fish communities result from these differences. Slopes display varying levels of system connectivity: (1) along-slope through property and material transport in boundary currents, (2) cross-slope through upwelling of warm and nutrient rich water and down-welling of dense water and organic rich matter, and (3) vertically through shear and mixing. Slope dynamics also generate separating functions through (1) along-slope and across-slope fronts concentrating biological activity, and (2) vertical gradients in the water column and at the seafloor that maintain distinct physical structure and community turnover. At the upper slope, climatic change is manifested in sea-ice retreat, increased heat and mass transport by sub-Arctic inflows, surface warming, and altered vertical stratification, while the lower slope has yet to display evidence of change. Model projections suggest that ongoing physical changes will enhance primary production at the upper slope, with suspected enhancing effects for consumers. We recommend Pan-Arctic monitoring efforts of slopes given that many signals of climate change appear there first and are then transmitted along the slope domain.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-02-08
    Description: Artificial upwelling (AU) is a novel geoengineering technology that brings seawater from the deep ocean to the surface. Within the context of global warming, AU techniques are proposed to reduce sea surface temperature at times of thermal stress around coral reefs. A computationally fast but coarse 3D Earth System model (3.6° longitude × 1.8° latitude) was used to investigate the environmental impacts of hypothetically implemented AU strategies in the Great Barrier Reef, South China Sea, and Hawaiian regions. While omitting the discussion on sub-grid hydrology, we simulated in our model a water translocation from either 130 or 550 m depth to sea surface at rates of 1 or 50 m3 s−1 as analogues to AU implementation. Under the Representative Concentration Pathway 8.5 emissions scenario from year 2020 on, the model predicted a prevention of coral bleaching until the year 2099 when AU was implemented, except under the least intense AU scenario (water from 130 m depth at 1 m3 s−1). Yet, intense AU implementation (water from 550 m depth at 50 m3 s-1) will likely have adverse effects on coral reefs by overcooling the surface water, altering salinity, decreasing calcium carbonate saturation, and considerably increasing nutrient levels. Our result suggests that if we utilize AU for mitigating coral bleaching during heat stress, AU implementation needs to be carefully designed with respect to AU’s location, depth, intensity and duration so that undesirable environmental effects are minimized. Following a proper installation and management procedure, however, AU has the potential to decelerate destructive bleaching events and buy corals more time to adjust to climate change.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-08
    Description: Deep-sea sponge grounds are underexplored ecosystems that provide numerous goods and services to the functioning of the deep-sea. This study assessed the prokaryotic diversity in embryos, recruits, and adults of Craniella zetlandica and Craniella infrequens, common and abundant representatives of deep-sea sponge grounds in the North Atlantic. Our results reveal that symbiont transmission in the two Craniella sponge species likely occurs vertically, as highly similar microbial consortia have been identified in adults, embryos, and recruits. Moreover, transmission electron microscopy revealed high abundances of sponge-associated microorganisms, among which Chloroflexi (SAR202) were identified as common representatives by amplicon sequencing and fluorescence in situ hybridization (FISH). Equal diversity metrices, a similar overall prokaryotic community composition and a distinct dominance of the phylum Chloroflexi within all life stages are the key findings of our analyses. Information such as presented here provide understanding on the recruitment of deep-sea sponge holobionts which is needed to develop integrated management tools of such vulnerable marine ecosystems.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-02-08
    Description: Ecological processes and intra-specific genetic diversity reciprocally affect each other. While the importance of uniting ecological variables and genetic variation to understand species’ plasticity, adaptation, and evolution is increasingly recognized, only few studies have attempted to address the intersection of population ecology and genetics using marine macrophyte as models. Representative empirical case studies on genetic diversity are reviewed that explore ecological and evolutionary processes in marine macrophytes. These include studies on environment-induced phenotypic plasticity and associated ecological adaptation; population genetic variation and structuring driven by ecological variation; and ecological consequences mediated by intraspecific and interspecific diversity. Knowledge gaps are also discussed that impede the connection of ecology and genetics in macrophytes and possible approaches to address these issues. Finally, an eco-evolutionary perspective is advocated, by incorporating structural-to-functional genomics and life cycle complexity, to increase the understanding of the adaptation and evolution of macrophytes in response to environmental heterogeneity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-02-08
    Description: Global warming is considered to be the most severe threat to coral reefs globally, which makes it important for scientists to develop novel strategies that mitigate the impact of warming on corals and associated habitats. Artificial upwelling of cooler deep water to the surface layer may be a possible mitigation/management tool. In this study, we investigated the effect of simulated artificial upwelling with deep water off Bermuda collected at 50 m (24°C) and 100 m (20°C) on coral symbiont biology of 3 coral species (Montastrea cavernosa, Porites astreoides, and Pseudodiploria strigosa) in a temperature stress experiment. The following treatments were applied over a period of 3 weeks: (i) control at 28°C (ii) heat at 31°C, (iii) heat at 31°C+ deep water from 50 m depth, and (iv) heat at 31°C+ deep water from 100 m depth. Artificial upwelling was simulated over a period of 25 min on a daily basis resulting in a reduction of temperature for 2 h per day and the following degree-heating-weeks: 5.7°C-weeks for ii, 4.6°C-weeks for iii and 4.2°C-weeks for iv. Comparative analysis of photosynthetic rate, chlorophyll-a concentration and zooxanthellae density revealed a reduction of heat stress responses in artificial upwelling treatments in 2 of the 3 investigated species, and a stronger positive effect of 100-m water than 50-m water. These results indicate that artificial upwelling could be an effective strategy to mitigate coral bleaching during heat stress events allowing corals to adjust to increasing temperatures more gradually. It will still be necessary to further explore the ecological benefits as well as potential ecosystem impacts associated with different artificial upwelling scenarios to carefully implement an effective in situ artificial upwelling strategy in coral reefs.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-06-07
    Description: The 2015 Paris Agreement aims to strengthen the global response to climate change, and to maintain an average global temperature well below 2 °C, with aspirations towards 1.5 °C, by means of balancing sources and sinks of greenhouse gas emissions. Following this, the importance of carbon dioxide removal in global emission pathways has been further emphasized, and Negative Emissions Technologies (NETs) that capture carbon from the atmosphere and remove it from the system have been put in the spotlight. NETs range from innovative, engineered technologies, to well-known approaches like afforestation/reforestation. These technologies essentially compensate for a shrinking carbon budget coupled with hard-to-abate future emissions, and a historical lack of action. However, none has been deployed at scales close to what is envisioned in emission pathways in line with the Paris Agreement goals. To understand the potential contribution of NETs to meet global emission goals, we need to better understand opportunities and constraints for deploying NETs on a national level. We examine 17 Long-Term Low Greenhouse Gas Emission Development Strategies (LT-LEDS), and discuss them in the context of available NETs feasibility assessments. Our mapping shows that most countries include NETs in their long-term strategies, and that enhancement of natural sinks is the most dominating type of NET in these strategies. In line with many feasibility assessments, LT-LEDS focus on technical and biophysical considerations, and neglect socio-cultural dimensions. We suggest that feasibility assessments at the national level need to be more holistic; context-specific and comprehensive in terms of aspects assessed.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...