GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Alfred Wegener Institute for Polar and Marine Research  (9)
  • Copernicus Publications  (2)
  • GFZ German Research Centre for Geosciences  (2)
  • 2015-2019  (13)
  • 2019  (13)
  • 1
    facet.materialart.
    Unknown
    Copernicus Publications
    In:  EPIC3Advances in Geosciences, Copernicus Publications, 46, pp. 25-43, ISSN: 1680-7340
    Publication Date: 2019-08-01
    Description: Because geoscientific research often occurs via community-instigated bursts of activity with multi-investigator collaborations variously labelled as e.g., years (The International Polar Year IPY), experiments (World Ocean Circulation Experiment WOCE), programs (International Ocean Discovery Program), missions (CRYOSAT spacecraft), or decades (The International Decade of Ocean Exploration IDOE), successful attainment of research goals generally requires skilful scientific project management. In addition to the usual challenges of matching scientific ambitions to limited resources, on-going coordination and specifically project management, planning and implementation of polar science projects often involve many uncertainties caused by, for example, unpredictable weather or ocean and sea ice conditions, large-scale logistical juggling; and often these collaborations are spatially distributed and take place virtually. Large amounts of funding are needed to procure the considerable infrastructure and technical equipment required for polar expeditions; permissions to enter certain regions must be requested; and potential risks for expedition members as well as technical issues in extreme environments need to be considered. All these aspects are challenging for polar science projects, which therefore need a well thought-through program including a realistic alternative “plan B” and possibly also a “plan C” and “plan D”. The four most challenging overarching themes in polar science project management have been identified: international cooperation, interdisciplinarity, infrastructure, and community management. In this paper, we address ongoing challenges and opportunities in polar science project management based on a survey among 199 project and community managers and an additional of 85 project team members active in the field of polar sciences. Case studies and survey results are discussed with the conclusive goal to provide recommendations on how to fully reach the potential of polar sciences project and community management.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-12
    Description: The Collisional Orogeny in the Scandinavian Caledonides (COSC) scientific drilling project focuses on mountain building processes in a major mid‐Paleozoic orogen in western Scandinavia and its comparison with modern analogues. The project investigates a subduction‐generated complex (Seve Nappes) and how these in part under ultra‐high pressure conditions metamorphosed outer continental margin and continent‐ocean transition zones (COT) assemblages were emplaced onto the Baltoscandian platform and there influenced the underlying allochthons and the basement in a section provided by two fully cored 2.5 km deep drill holes. This operational report concerns the first drill hole, COSC‐1 (ICDP 5054‐1‐A), drilled from early May to late August 2014. It sampled a thick section of the lower part of the Seve Complex and was planned to penetrate its basal thrust zone into the underlying lower grade metamorphosed allochthon. The drill hole reached a depth of 2495.8 m and nearly 100 % core recovery was achieved. Although planning was based on existing geological mapping and new high‐resolution seismic surveys, the drilling resulted in some surprises: the Lower Seve Nappe proved to be composed of rather homogenous gneisses, with only subordinate mafic bodies and its basal thrust zone was unexpectedly thick (〉 800 m). The drill hole did not penetrate the bottom of the thrust zone. However, lower grade metasedimentary rocks were encountered in the lowermost part of the drill hole together with garnetiferous mylonites tens of metres thick. The tectonostratigraphic position is still unclear and geological and geophysical interpretations are under revision. The compact gneisses host only 8 fluid conducting zones of limited transmissivity between 300 m and total depth. Downhole measurements suggest an uncorrected average geothermal gradient of ~20°C/km. The drill core was documented on‐site and XRF scanned off site. During various stages of the drilling, the borehole was documented by comprehensive downhole logging. This operational report provides an overview over the COSC‐1 operations from drilling preparations to the sampling party and describes the available datasets and sample material.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Alfred Wegener Institute for Polar and Marine Research
    In:  EPIC3Berichte zur Polar- und Meeresforschung = Reports on polar and marine research, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research, 726, 72 p., ISSN: 1866-3192
    Publication Date: 2019-04-02
    Repository Name: EPIC Alfred Wegener Institut
    Type: "Berichte zur Polar- und Meeresforschung" , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Alfred Wegener Institute for Polar and Marine Research
    In:  EPIC3Berichte zur Polar- und Meeresforschung = Reports on polar and marine research, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research, 733, 143 p., ISSN: 1866-3192
    Publication Date: 2019-12-03
    Repository Name: EPIC Alfred Wegener Institut
    Type: "Berichte zur Polar- und Meeresforschung" , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Alfred Wegener Institute for Polar and Marine Research
    In:  EPIC3Berichte zur Polar- und Meeresforschung = Reports on polar and marine research, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research, 731, 54 p., ISSN: 1866-3192
    Publication Date: 2019-04-11
    Repository Name: EPIC Alfred Wegener Institut
    Type: "Berichte zur Polar- und Meeresforschung" , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Alfred Wegener Institute for Polar and Marine Research
    In:  EPIC3Berichte zur Polar- und Meeresforschung = Reports on polar and marine research, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research, 737, 28 p., ISSN: 1866-3192
    Publication Date: 2019-12-20
    Repository Name: EPIC Alfred Wegener Institut
    Type: "Berichte zur Polar- und Meeresforschung" , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Alfred Wegener Institute for Polar and Marine Research
    In:  EPIC3Berichte zur Polar- und Meeresforschung = Reports on polar and marine research, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research, 732, 205 p., ISSN: 1866-3192
    Publication Date: 2019-09-18
    Repository Name: EPIC Alfred Wegener Institut
    Type: "Berichte zur Polar- und Meeresforschung" , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-01-30
    Description: Permafrost landscapes are changing around the Arctic in response to climate warming, with coastal erosion being one of the most prominent and hazardous features. Using drone platforms, satellite images, and historic aerial photographs, we observed the rapid retreat of a permafrost coastline on Qikiqtaruk – Herschel Island, Yukon Territory, in the Canadian Beaufort Sea. This coastline is adjacent to a gravel spit accommodating several culturally significant sites and is the logistical base for the Qikiqtaruk – Herschel Island Territorial Park operations. In this study we sought to (i) assess short-term coastal erosion dynamics over fine temporal resolution, (ii) evaluate short-term shoreline change in the context of long-term observations, and (iii) demonstrate the potential of low-cost lightweight unmanned aerial vehicles (“drones”) to inform coastline studies and management decisions. We resurveyed a 500 m permafrost coastal reach at high temporal frequency (seven surveys over 40 d in 2017). Intra-seasonal shoreline changes were related to meteorological and oceanographic variables to understand controls on intra-seasonal erosion patterns. To put our short-term observations into historical context, we combined our analysis of shoreline positions in 2016 and 2017 with historical observations from 1952, 1970, 2000, and 2011. In just the summer of 2017, we observed coastal retreat of 14.5 m, more than 6 times faster than the long-term average rate of 2.2±0.1 m a−1 (1952–2017). Coastline retreat rates exceeded 1.0±0.1 m d−1 over a single 4 d period. Over 40 d, we estimated removal of ca. 0.96 m3 m−1 d−1. These findings highlight the episodic nature of shoreline change and the important role of storm events, which are poorly understood along permafrost coastlines. We found drone surveys combined with image-based modelling yield fine spatial resolution and accurately geolocated observations that are highly suitable to observe intra-seasonal erosion dynamics in rapidly changing Arctic landscapes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-02-12
    Description: In summer 2017, the ICDP SUSTAIN project (Surtsey Underwater volcanic System for Thermophiles, Alteration processes and INnovative concretes), drilled three cored boreholes (Table 1) through Surtsey at sites ≤10 m from a cored hole obtained in 1979. Drilling through the still hot volcano was carried out with an Atlas Copco CS1000 drill rig, whose components were transported by helicopter to Surtsey and re-assembled on site. The first vertical borehole, SE-02a, was cored in HQ diameter to 152 meters below surface (m b.s.) during August 7-16. It was terminated due to borehole collapse. A second vertical (SE-02b) cored borehole was then drilled in HQ diameter to 192 m during August 19-26. Wireline borehole logging in SE-02b was performed August 26. The anodized NQ-sized aluminum tubing of the Surtsey Subsurface Observatory was installed in SE-02b to 181 m depth on August 27. A third borehole, SE-03, angled 35° from vertical and directed 264°, was drilled from August 28 to September 4 and reached a measured depth of 354 m (~290 m vertical depth) under the eastern crater. The core is HQ diameter to a measured depth of 213 m and NQ diameter from 213-354 m measured depth. The core traverses the deep conduit and intrusions of the volcano to a total vertical depth of 290 m b.s. Seawater drilling fluid for boreholes SE-02a and SE-02b was filtered and doubly UV-sterilized at the drill site. No mud products were employed while coring SE-02a, while small amounts of attapulgite mud were used in SE-02b and SE-03. Core samples for geochemical analyses of pore water and microbiological investigations were collected on site from all three boreholes. About 650 m of core was transported by helicopter to Heimaey, 18 km northeast of Surtsey, to a processing laboratory where the core was scanned, documented, and described. Additional core processing has taken place at the Náttúrufraedistofnun Íslands, the Icelandic Institute of Natural History in Gardabaer, where both the 1979 and 2017 cores are stored.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Alfred Wegener Institute for Polar and Marine Research
    In:  EPIC3Berichte zur Polar- und Meeresforschung = Reports on polar and marine research, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research, 729, 111 p., ISSN: 1866-3192
    Publication Date: 2019-04-02
    Repository Name: EPIC Alfred Wegener Institut
    Type: "Berichte zur Polar- und Meeresforschung" , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...