GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-11-09
    Description: 1. A resampling of 38 small farmland ponds in Belgium after 10 years revealed a high temporal species turnover for both phytoplankton and zooplankton communities, associated with substantial changes in abiotic factors, especially a reduction in total phosphorus concentration. 2. Across ponds, phytoplankton biomass decreased while evenness and richness increased between the samplings in 2003 and 2013. By contrast, the zooplankton assemblage was characterised by lower biomass, richness and evenness in 2013. Ponds experiencing larger environmental change showed stronger changes in phytoplankton richness and evenness. 3. Resource use efficiency (RUE) of zooplankton increased with greater environmental change and zooplankton evenness, which points to a switch towards species with higher RUE or greater variety in food sources in higher trophic levels. 4. As ponds are important habitats for freshwater biodiversity and ecosystems services, the strong but predictable species turnover and the opposing effects of environmental change on different trophic levels need to be embedded in conservation and management plans.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    WILEY-BLACKWELL PUBLISHING
    In:  EPIC3Global Change Biology, WILEY-BLACKWELL PUBLISHING, 24(10), pp. 4532-4543, ISSN: 1354-1013
    Publication Date: 2018-11-09
    Description: While there is a lot of data on interactive effects of eutrophication and warming, to date, we lack data to generate reliable predictions concerning possible effects of nutrient decrease and temperature increase on community composition and functional responses. In recent years, a wide‐ranging trend of nutrient decrease (re‐oligotrophication) was reported for freshwater systems. Small lakes and ponds, in particular, show rapid responses to anthropogenic pressures and became model systems to investigate single as well as synergistic effects of warming and fertilization in situ and in experiments. Therefore, we set up an experiment to investigate the single as well as the interactive effects of nutrient reduction and gradual temperature increase on a natural freshwater phytoplankton community, using an experimental indoor mesocosm setup. Biomass production initially increased with warming but decreased with nutrient depletion. If nutrient supply was constant, biomass increased further, especially under warming conditions. Under low nutrient supply, we found a sharp transition from initially positive effects of warming to negative effects when resources became scarce. Warming reduced phytoplankton richness and evenness, whereas nutrient reduction at ambient temperature had positive effects on diversity. Our results indicate that temperature effects on freshwater systems will be altered by nutrient availability. These interactive effects of energy increase and resource decrease have major impacts on biodiversity and ecosystem function and thus need to be considered in environmental management plans.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    WILEY-BLACKWELL PUBLISHING
    In:  EPIC3Global Change Biology, WILEY-BLACKWELL PUBLISHING, ISSN: 1354-1013
    Publication Date: 2019-05-30
    Description: Increasing air temperatures are changing the arctic tundra biome. Permafrost is thawing, snow duration is decreasing, shrub vegetation is proliferating, and boreal wildlife is encroaching. Here we present evidence of the recent range expansion of North American beaver (Castor canadensis) into the Arctic, and consider how this ecosystem engineer might reshape the landscape, biodiversity, and ecosystem processes. We developed a remote sensing approach that maps formation and disappearance of ponds associated with beaver activity. Since 1999, 56 new beaver pond complexes were identified, indicating that beavers are colonizing a predominantly tundra region (18,293 km2) of northwest Alaska. It is unclear how improved tundra stream habitat, population rebound following overtrapping for furs, or other factors are contributing to beaver range expansion. We discuss rates and likely routes of tundra beaver colonization, as well as effects on permafrost, stream ice regimes, and freshwater and riparian habitat. Beaver ponds and associated hydrologic changes are thawing permafrost. Pond formation increases winter water temperatures in the pond and downstream, likely creating new and more varied aquatic habitat, but specific biological implications are unknown. Beavers create dynamic wetlands and are agents of disturbance that may enhance ecosystem responses to warming in the Arctic.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...