GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-12-28
    Description: The sustainable management of groundwater resources is a pressing necessity for most countries. As most of the Arab world is facing severe water scarcity, threats of depletion of non-renewable groundwater, and problems of pollution and salt-water intrusions into groundwater aquifers, much effort should be devoted to eliminate these dangers in advance. This work was devoted to bring up insights into Arab world research activities in groundwater, which is a crucial task to identify their status and can help in shaping up and improving future research activities. A bibliometric analysis has been conducted to track these activities. The study identified 1417 documents which represent 3.3% of global research productivity. Egypt was the most productive country (313; 22.1%), followed by Saudi Arabia (254; 17.9%). Total citations were 9720 with an average of 6.9. The h -index of the retrieved documents was 39, and the highest one was 22 for Egypt. The most common subject category was Environmental Science, and the most productive journal was Arabian Journal of Geosciences (99; 7.0%). In international research collaboration, France was the most collaborated country with Arab world (125; 8.8%), followed by the United States (113; 8.0%). The most productive institution was King Abdul-Aziz University, Saudi Arabia (66; 4.7%). The outcomes shows remarkable improvements in groundwater research activities originated from the Arab world. Even though, constructive efforts should be pursued vigorously to bridge the gaps in groundwater-based research. Moreover, promotion of better evaluation tools to assess the risks arising from the mismanagement of groundwater resources is required urgently.
    Print ISSN: 2190-5487
    Electronic ISSN: 2190-5495
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PERGAMON-ELSEVIER SCIENCE LTD
    In:  EPIC3Journal of Asian Earth Sciences, PERGAMON-ELSEVIER SCIENCE LTD, 122, pp. 106-122, ISSN: 1367-9120
    Publication Date: 2016-05-11
    Description: Rebun Island is a key research area for the Baikal-Hokkaido Archaeology Project to better understand the dynamics of the Neolithic hunter-gatherers in the NW Pacific region. Hence, the ca. 19.5 m sediment core RK12 spanning the last ca. 16.6 cal. kyr BP was obtained from Lake Kushu. Our aim is to test its potential as a high-resolution multi-proxy archive. Here, we used diatoms to investigate the modern ecosystem of Lake Kushu and its surrounding area on Rebun Island and of Hime-numa Pond on Rishiri Island and selected core samples for comparison. Modern diatom and stable isotope analyses show well-mixed freshwater bodies with eutrophic, alkaline conditions. The fossil diatom and geochemical sediment analyses display three phases that represent major changes in the lake development: (i) a marshy phase (ca. 16.6-10 cal. kyr BP); (ii) a brackish water lagoon phase (ca. 10-6.6 cal. kyr BP); and (iii) a freshwater lake phase (since ca. 6.6 cal. kyr BP). This shows the major role of the post-glacial climate amelioration, global sea-level rise and marine transgression in the development of this landscape. Further analyses will provide a palaeolimnological record at (sub-)decadal resolution that will facilitate the interpretation of the hunter-gatherer dynamics.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Springer
    In:  Water Resources Development and Management
    Publication Date: 2020-02-12
    Language: English
    Type: info:eu-repo/semantics/book
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PERGAMON-ELSEVIER SCIENCE LTD
    In:  EPIC3Quaternary Science Reviews, PERGAMON-ELSEVIER SCIENCE LTD, 147, pp. 148-163, ISSN: 0277-3791
    Publication Date: 2016-10-30
    Description: A recent data campaign in the East Siberian Sea has revealed evidence of grounded and floating ice dynamics in regions of up to 1000 m water depth, and which are attributed to glaciations older than the Last Glacial Maximum (21 kyrs BP). The main hypothesis based on this evidence is that a small ice cap developed over Beringia and expanded over the East Siberian continental margin during some of the Late Pleistocene glaciations. Other similar evidence of ice dynamics that have been previously collected on the shallow continental shelves of the Arctic Ocean have been attributed to the penultimate glaciation, i.e. Marine Isotopes Stage 6 (z 140 kyrs BP). We use an ice sheet model, forced by two previously simulated MIS 6 glacial maximum climates, to carry out a series of sensitivity experiments testing the impact of dynamics and mass-balance related parameters on the geometry of the East Siberian ice cap and ice shelf. Results show that the ice cap developing over Beringia connects to the Eurasian ice sheet in all simulations and that its volume ranges between 6 and 14 m SLE, depending on the climate forcing. This ice cap generates an ice shelf of dimensions comparable with or larger than the present-day Ross ice shelf in West Antarctica. Although the ice shelf extent strongly depends on the ice flux through the grounding line, it is particularly sensitive to the choice of the calving and basal melting parameters. Finally, inhibiting a merging of the Beringia ice cap with the Eurasian ice sheet affects the expansion of the ice shelf only in the simulations where the ice cap fluxes are not large enough to compensate for the fluxes coming from the Eurasian ice sheet.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...