GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-10-01
    Description:    Pesticides are widely used in modern agriculture to minimize financial losses and maintain food supplies. In southeast Asia, where agriculture is the principal economic activity, pesticides are considered essential, particularly in tropical regions seeking to enter the global economy by providing off-season fresh fruits and vegetables. The absence of a strong legal framework for pesticides facilitated a significant increase in the use of low-quality pesticides. Farmers ignore the risks, safety instructions, and protective directives when using pesticides. They are only concerned about the effectiveness of the pesticides for killing pests, without paying attention to the effects on their health and the environment. The improper usage of pesticides and the incorrect disposal of pesticide wastes contributed to the pollution of groundwater, surface water, and soil, and induced health problems in local communities. This paper describes the impact of the exposure of pesticides on human health and water resources in connection with the usage of pesticides and their management. Because of availability, the data are mainly taken for Northern Vietnam, and applied to the water quality in the delta; nevertheless, the problem relates to all countries in the delta, and similar situations may be found in other regions, particularly in Asia. Content Type Journal Article Category ORIGINAL ARTICLE Pages 1-9 DOI 10.1007/s10163-012-0081-x Authors Pham Thi Thuy, Laboratory of Applied Physical Chemistry and Environmental Technology, Department of Chemical Engineering, K.U. Leuven, W. de Croylaan 46, 3001 Leuven, Belgium Steven Van Geluwe, Laboratory of Applied Physical Chemistry and Environmental Technology, Department of Chemical Engineering, K.U. Leuven, W. de Croylaan 46, 3001 Leuven, Belgium Viet-Anh Nguyen, Institute of Environmental Science and Engineering, Hanoi University of Civil Engineering, 55 Giai Phong Road, Hanoi, Vietnam Bart Van der Bruggen, Laboratory of Applied Physical Chemistry and Environmental Technology, Department of Chemical Engineering, K.U. Leuven, W. de Croylaan 46, 3001 Leuven, Belgium Journal Journal of Material Cycles and Waste Management Online ISSN 1611-8227 Print ISSN 1438-4957
    Print ISSN: 1438-4957
    Electronic ISSN: 1611-8227
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-05-01
    Description: Introduction   The paper analyses the environment pollution state in different case studies of economic activities (i.e. co-generation electric and thermal power production, iron profile manufacturing, cement processing, waste landfilling, and wood furniture manufacturing), evaluating mainly the environmental cumulative impacts (e.g. cumulative impact against the health of the environment and different life forms). Materials and methods   The status of the environment (air, water resources, soil, and noise) is analysed with respect to discharges such as gaseous discharges in the air, final effluents discharged in natural receiving basins or sewerage system, and discharges onto the soil together with the principal pollutants expressed by different environmental indicators corresponding to each specific productive activity. The alternative methodology of global pollution index ( I GP * ) for quantification of environmental impacts is applied. Results and discussion   Environmental data analysis permits the identification of potential impact, prediction of significant impact, and evaluation of cumulative impact on a commensurate scale by evaluation scores (ES i ) for discharge quality, and global effect to the environment pollution state by calculation of the global pollution index ( I GP * ). Conclusions   The I GP * values for each productive unit (i.e. 1.664–2.414) correspond to an ‘environment modified by industrial/economic activity within admissible limits, having potential of generating discomfort effects’. The evaluation results are significant in view of future development of each productive unit and sustain the economic production in terms of environment protection with respect to a preventive environment protection scheme and continuous measures of pollution control. Content Type Journal Article Category Short Research and Discussion Article Pages 1-8 DOI 10.1007/s11356-012-0883-3 Authors Carmen Zaharia, Department of Environmental Engineering and Management, Faculty of Chemical Engineering and Environmental Protection, ‘Gheorghe Asachi’ Technical University of Iasi, 73 Prof. Dr. docent D. Mangeron Blvd, 700050 Iasi, Romania Journal Environmental Science and Pollution Research Online ISSN 1614-7499 Print ISSN 0944-1344
    Print ISSN: 0944-1344
    Electronic ISSN: 1614-7499
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-11-12
    Description: The need for an integrated approach to the global challenge of POPs management Content Type Journal Article Category Editorial Pages 1-6 DOI 10.1007/s11356-012-1247-8 Authors Roland Weber, International HCH and Pesticide Association, Elmevej 14, 2840 Holte, Denmark Gulchohra Aliyeva, International HCH and Pesticide Association, Elmevej 14, 2840 Holte, Denmark John Vijgen, International HCH and Pesticide Association, Elmevej 14, 2840 Holte, Denmark Journal Environmental Science and Pollution Research Online ISSN 1614-7499 Print ISSN 0944-1344
    Print ISSN: 0944-1344
    Electronic ISSN: 1614-7499
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-02-04
    Description: Purpose   The main goal of this paper was to analyse the environmental profile of a structural component of a wooden house: a ventilated wooden wall, by combining two environmental methodologies: one quantitative, the life cycle assessment (LCA) and another qualitative, the design for the environment (DfE). Methods   The LCA study covers the whole life cycle of the ventilated wall manufacture as well as its distribution, installation and maintenance. To carry out this analysis, a Galician wood company was assessed in detail, dividing the process into four stages: the assembling stage, the packing stage, the distribution to clients as well as the final installation and maintenance of the wooden wall. Ten impact categories have been assessed in detail in the LCA study: abiotic depletion (AD), acidification (AC), eutrophication (EP), global warming (GW), ozone layer depletion (OD), human toxicity (HT), fresh water aquatic ecotoxicity (FE), marine aquatic ecotoxicity (ME), terrestrial ecotoxicity (TE) and photochemical oxidant formation (PO). Results and discussion   According to the environmental results, the assembling stage was the most important contributor to the environmental profile with contributions from 57% to 87%, followed by the production of the electricity required. The detailed analysis of the assembling stage identified the most important environmental hot spots: the production of boards used in the structure [oriented strand board and medium density fibreboard (MDF)] as well as the transportation of the cedar sheets from Brazil. Concerning the results of the DfE, a selection of different eco-design strategies was proposed from technological, economic and social points of view by an interdisciplinary team of researchers and company´s workers. The eco-design strategy considered the following improvement actions: (i) the substitution of the MDF in the wall structure; (ii) the use of German red pine sheets; (iii) the installation of solar panels in the facilities; (iv) the use of Euro 5 transport vehicles, (v) the use of biodiesel for transport; (vi) the definition of a maintenance protocol for the wooden materials; and (vii) the definition of a protocol for the separation of materials before disposal. Conclusions   The results obtained in this work allow predicting the influence of the selection and origin of the raw materials used on the environmental burdens associated with the process. Future work will focus on the manufacturing of a prototype of an eco-designed ventilated wooden wall. Content Type Journal Article Category WOOD AND OTHER RENEWABLE RESOURCES Pages 1-12 DOI 10.1007/s11367-012-0384-0 Authors Sara González-García, Department of Life Sciences, Division of Biology, Imperial College of London, South Kensington Campus, Sir Alexander Fleming Buildings, London, SW7 2AZ UK Raúl García Lozano, SosteniPrA (UAB-IRTA-Inèdit), Institute of Environmental Science and Technology (ICTA), School of Engineering, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Catalonia, Spain Javier Costas Estévez, Quality Management Department, Las cinco Jotas, Avda. Camelias No 1, 6203 Vigo, Spain Rosario Castilla Pascual, Innovation and Technology Area, CIS MADEIRA, Galician Park of Technology, Avenida de Galicia 5, San Cibrao das Viñas, 32901 Ourense, Spain Ma. Teresa Moreira, Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain Xavier Gabarrell, SosteniPrA (UAB-IRTA-Inèdit), Institute of Environmental Science and Technology (ICTA), School of Engineering, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Catalonia, Spain Joan Rieradevall i Pons, SosteniPrA (UAB-IRTA-Inèdit), Institute of Environmental Science and Technology (ICTA), School of Engineering, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Catalonia, Spain Gumersindo Feijoo, Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain Journal The International Journal of Life Cycle Assessment Online ISSN 1614-7502 Print ISSN 0948-3349
    Print ISSN: 0948-3349
    Electronic ISSN: 1614-7502
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Economics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-05-03
    Description: Introduction   The Consolider-Ingenio 2010 project SCARCE, with the full title “Assessing and predicting effects on water quantity and quality in Iberian Rivers caused by global change” aims to examine and predict the relevance of global change on water availability, water quality, and ecosystem services in Mediterranean river basins of the Iberian Peninsula, as well as their socio-economic impacts. Starting in December 2009, it brought together a multidisciplinary team of 11 partner Spanish institutions, as well as the active involvement of water authorities, river basin managers, and other relevant agents as stakeholders. Methods   The study areas are the Llobregat, Ebro, Jucar, and Guadalquivir river basins. These basins have been included in previous studies and projects, the majority of whom considered some of the aspects included in SCARCE but individually. Historical data will be used as a starting point of the project but also to obtain longer time series. The main added value of SCARCE project is the inclusion of scientific disciplines ranging from hydrology, geomorphology, ecology, chemistry, and ecotoxicology, to engineering, modeling, and economy, in an unprecedented effort in the Mediterranean area. The project performs data mining, field, and lab research as well as modeling and upscaling of the findings to apply them to the entire river basin. Results   Scales ranging from the laboratory to river basins are addressed with the potential to help improve river basin management. The project emphasizes, thus, linking basic research and management practices in a single framework. In fact, one of the main objectives of SCARCE is to act as a bridge between the scientific and the management and to transform research results on management keys and tools for improving the River Basin Management Plans. Here, we outline the general structure of the project and the activities conducted within the ten Work Packages of SCARCE. Content Type Journal Article Category Research Article Pages 918-933 DOI 10.1007/s11356-011-0566-5 Authors Alícia Navarro-Ortega, IDAEA-CSIC, Jordi Girona, 18-26, 08034 Barcelona, Spain Vicenç Acuña, ICRA, Edifici H2O, Emili Grahit, 101, 17003 Girona, Spain Ramon J. Batalla, UdL/CTFC, Alcalde Rovira Roure 191, 25198 Lleida, Spain Julián Blasco, ICMAN-CSIC, Campus Rio San Pedro, 11510 Puerto Real, Cádiz, Spain Carlos Conde, UPM, Avda. Ramiro de Maeztu 7, 28040 Madrid, Spain Francisco J. Elorza, UPM, Avda. Ramiro de Maeztu 7, 28040 Madrid, Spain Arturo Elosegi, UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Spain Félix Francés, UPV, Camino de Vera s/n, Valencia, Spain Francesc La-Roca, UV, Avda. Blasco Ibáñez 13, Valencia, Spain Isabel Muñoz, UB, Av. Diagonal, 645, 08028 Barcelona, Spain Mira Petrovic, ICRA, Edifici H2O, Emili Grahit, 101, 17003 Girona, Spain Yolanda Picó, UV, Avda. Blasco Ibáñez 13, Valencia, Spain Sergi Sabater, ICRA, Edifici H2O, Emili Grahit, 101, 17003 Girona, Spain Xavier Sanchez-Vila, UPC, Carrer Jordi Girona 31, Barcelona, Spain Marta Schuhmacher, ETSEQ, URV, Campus Sescelades, 43007 Tarragona, Spain Damià Barceló, IDAEA-CSIC, Jordi Girona, 18-26, 08034 Barcelona, Spain Journal Environmental Science and Pollution Research Online ISSN 1614-7499 Print ISSN 0944-1344 Journal Volume Volume 19 Journal Issue Volume 19, Number 4
    Print ISSN: 0944-1344
    Electronic ISSN: 1614-7499
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-03-22
    Description:    Geoengineering methods are intended to reduce climate change, which is already having demonstrable effects on ecosystem structure and functioning in some regions. Two types of geoengineering activities that have been proposed are: carbon dioxide (CO 2 ) removal (CDR), which removes CO 2 from the atmosphere, and solar radiation management (SRM, or sunlight reflection methods), which reflects a small percentage of sunlight back into space to offset warming from greenhouse gases (GHGs). Current research suggests that SRM or CDR might diminish the impacts of climate change on ecosystems by reducing changes in temperature and precipitation. However, sudden cessation of SRM would exacerbate the climate effects on ecosystems, and some CDR might interfere with oceanic and terrestrial ecosystem processes. The many risks and uncertainties associated with these new kinds of purposeful perturbations to the Earth system are not well understood and require cautious and comprehensive research. Content Type Journal Article Category Review Paper Pages 1-20 DOI 10.1007/s13280-012-0258-5 Authors Lynn M. Russell, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Dr. Mail Code 0221, La Jolla, CA 92093-0221, USA Philip J. Rasch, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P. O. Box 999, MSIN K9-34, Richland, WA 99352, USA Georgina M. Mace, Centre for Population Biology, Imperial College London, Ascot, Berks SL5 7PY, UK Robert B. Jackson, Nicholas School of the Environment, Duke University, Durham, NC 27708, USA John Shepherd, Earth System Science, School of Ocean and Earth Sciences, National Oceanography Centre, University of Southampton, European Way, Southampton, SO14 3ZH UK Peter Liss, School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ UK Margaret Leinen, Harbor Branch Oceanographic Institute, 5600 US Rt 1 North, Fort Pierce, FL 34946, USA David Schimel, NEON Inc, 1685 38th Street, Boulder, CO 80305, USA Naomi E. Vaughan, Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK Anthony C. Janetos, Joint Global Change Research Institute Pacific Northwest National Laboratory/University of Maryland, 5825 University Research Court, Suite 3500, College Park, MD 20740, USA Philip W. Boyd, NIWA Centre of Chemical & Physical Oceanography, Department of Chemistry, University of Otago, Dunedin, New Zealand Richard J. Norby, Environmental Sciences Division, Oak Ridge National Laboratory, Bethel Valley Road, Bldg. 2040, MS-6301, Oak Ridge, TN 37831-6301, USA Ken Caldeira, Department of Global Ecology, Carnegie Institution, Stanford, CA 94305, USA Joonas Merikanto, Division of Atmospheric Sciences, Department of Physics, University of Helsinki, P.O Box 64, 00014 Helsinki, Finland Paulo Artaxo, Institute of Physics, University of São Paulo, Rua do Matão, Travessa R, 187, São Paulo, SP CEP 05508-090, Brazil Jerry Melillo, The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA M. Granger Morgan, Department of Engineering and Public Policy, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA Journal AMBIO: A Journal of the Human Environment Online ISSN 1654-7209 Print ISSN 0044-7447
    Print ISSN: 0044-7447
    Electronic ISSN: 1654-7209
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer on behalf of The Royal Swedish Academy of Sciences.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-04-30
    Description: Purpose   Land use is a main driver of global biodiversity loss and its environmental relevance is widely recognized in research on life cycle assessment (LCA). The inherent spatial heterogeneity of biodiversity and its non-uniform response to land use requires a regionalized assessment, whereas many LCA applications with globally distributed value chains require a global scale. This paper presents a first approach to quantify land use impacts on biodiversity across different world regions and highlights uncertainties and research needs. Methods   The study is based on the United Nations Environment Programme (UNEP)/Society of Environmental Toxicology and Chemistry (SETAC) land use assessment framework and focuses on occupation impacts, quantified as a biodiversity damage potential (BDP). Species richness of different land use types was compared to a (semi-)natural regional reference situation to calculate relative changes in species richness. Data on multiple species groups were derived from a global quantitative literature review and national biodiversity monitoring data from Switzerland. Differences across land use types, biogeographic regions (i.e., biomes), species groups and data source were statistically analyzed. For a data subset from the biome (sub-)tropical moist broadleaf forest, different species-based biodiversity indicators were calculated and the results compared. Results and discussion   An overall negative land use impact was found for all analyzed land use types, but results varied considerably. Different land use impacts across biogeographic regions and taxonomic groups explained some of the variability. The choice of indicator also strongly influenced the results. Relative species richness was less sensitive to land use than indicators that considered similarity of species of the reference and the land use situation. Possible sources of uncertainty, such as choice of indicators and taxonomic groups, land use classification and regionalization are critically discussed and further improvements are suggested. Data on land use impacts were very unevenly distributed across the globe and considerable knowledge gaps on cause–effect chains remain. Conclusions   The presented approach allows for a first rough quantification of land use impact on biodiversity in LCA on a global scale. As biodiversity is inherently heterogeneous and data availability is limited, uncertainty of the results is considerable. The presented characterization factors for BDP can approximate land use impacts on biodiversity in LCA studies that are not intended to directly support decision-making on land management practices. For such studies, more detailed and site-dependent assessments are required. To assess overall land use impacts, transformation impacts should additionally be quantified. Therefore, more accurate and regionalized data on regeneration times of ecosystems are needed. Content Type Journal Article Category GLOBAL LAND USE IMPACTS ON BIODIVERSITY AND ECOSYSTEM SERVICES IN LCA Pages 1-15 DOI 10.1007/s11367-012-0412-0 Authors Laura de Baan, Institute for Environmental Decisions, Natural and Social Science Interface, ETH Zurich, Universitaetsstr. 22, 8092 Zurich, Switzerland Rob Alkemade, PBL Netherlands Environmental Assessment Agency, P. O. Box 303, 3720 AH Bilthoven, The Netherlands Thomas Koellner, Professorship of Ecological Services, Faculty of Biology, Chemistry and Geosciences, University of Bayreuth, GEO II, Room 1.17, Universitaetsstr. 30, 95440 Bayreuth, Germany Journal The International Journal of Life Cycle Assessment Online ISSN 1614-7502 Print ISSN 0948-3349
    Print ISSN: 0948-3349
    Electronic ISSN: 1614-7502
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Economics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-08-23
    Description:    To avoid dangerous changes to the climate system, the global mean temperature must not rise more than 2 °C from the 19th century level. The German Advisory Council on Global Change recommends maintaining the rate of change in temperature to within 0.2 °C per decade. This paper supposes that a geoengineering option of solar radiation management (SRM) by injecting aerosol into the Earth’s stratosphere becomes applicable in the future to meet those temperature conditions. However, a failure to continue the use of this option could cause a rapid temperature rebound, and thus we propose a principle of SRM use that the temperature conditions must be satisfied even after SRM termination at any time. We present economically optimal trajectories of the amounts of SRM use and the reduction of carbon dioxide (CO 2 ) emissions under our principle by using an economic model of climate change. To meet the temperature conditions described above, the SRM must reduce radiative forcing by slightly more than 1 W/m 2 at most, and industrial CO 2 emissions must be cut by 80 % by the end of the 21st century relative to 2005, assuming a climate sensitivity of 3 °C. Lower-level use of SRM is required for a higher climate sensitivity; otherwise, the temperature will rise faster in the case of SRM termination. Considering potential economic damages of environmental side effects due to the use of SRM, the contribution of SRM would have to be much smaller. Content Type Journal Article Category Original Article Pages 1-26 DOI 10.1007/s11027-012-9414-2 Authors Takanobu Kosugi, College of Policy Science, Ritsumeikan University, 56-1 Toji-in Kitamachi, Kita-ku, Kyoto, 603-8577 Japan Journal Mitigation and Adaptation Strategies for Global Change Online ISSN 1573-1596 Print ISSN 1381-2386
    Print ISSN: 1381-2386
    Electronic ISSN: 1573-1596
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-07-02
    Description: Background,   aim, and scope Fujian reservoirs in southeast China are important water resources for economic and social sustainable development, although few have been studied previously. In recent years, growing population and increasing demands for water shifted the focus of many reservoirs from flood control and irrigation water to drinking water. However, most of them showed a rapid increase in the level of eutrophication, which is one of the most serious and challenging environmental problems. In this study, we investigated the algae community characteristics, trophic state, and eutrophication control strategies for typical subtropical reservoirs in southeast Fujian. Materials and methods   Surface water samples were collected using polyvinyl chloride (PVC) plastic bottles from 11 Fujian reservoirs in summer 2010. Planktonic algae were investigated by optical microscopy. Water properties were determined according to the national standard methods. Results and discussion   Shallow reservoirs generally have higher values of trophic state index (TSI) and appear to be more susceptible to anthropogenic disturbance than deeper reservoirs. A total of 129 taxa belonging to eight phyla (i.e., Bacillariophyta, Chlorophyta, Chrysophyta, Cryptophyta, Cyanophyta, Euglenophyta, Pyrrophyta, Xanthophyta) were observed and the most diverse groups were Chlorophyta (52 taxa), Cyanophyta (20 taxa), Euglenophyta (17 taxa), Chrysophyta (14 taxa). The dominant groups were Chlorophyta (40.58%), Cyanophyta (22.91%), Bacillariophyta (21.61%), Chrysophyta (6.91%). The species richness, abundance, diversity, and evenness of algae varied significantly between reservoirs. TSI results indicated that all 11 reservoirs were eutrophic, three of them were hypereutrophic, six were middle eutrophic, and two were light eutrophic. There was a strong positive correlation between algal diversity and TSI at P  〈 0.05. Our canonical correspondence analysis (CCA) results illustrated that temperature, transparency, conductivity, DO, TC, NH 4 -N, NO x -N, TP, and chlorophyll a were significant environmental variables affecting the distribution of algae communities. The transparency and chlorophyll a were the strongest environmental factors in explaining the community data. Furthermore, the degradation of water quality associated with excess levels of nitrogen and phosphorus in Fujian reservoirs may be impacted by interactions among agriculture and urban factors. A watershed-based management strategy, especially phosphorus control, should be developed for drinking water source protection and sustainable reservoirs in the future. Conclusion and recommendations   All investigated reservoirs were eutrophicated based on the comprehensive TSI values; thus, our results provided an early warning of water degradation in Fujian reservoirs. Furthermore, the trophic state plays an important role in shaping community structure and in determining species diversity of algae. Therefore, long-term and regular monitoring of Euglenophyta, Cyanophyta, TN, TP and chlorophyll a in reservoirs is urgently needed to further understand the future trend of eutrophication and to develop a watershed-based strategy to manage the Cyanophyta bloom hazards. Content Type Journal Article Category Urbanization in China and its Environmental Impact Pages 1432-1442 DOI 10.1007/s11356-011-0683-1 Authors Jun Yang, Aquatic Ecohealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021 China Xiaoqing Yu, Aquatic Ecohealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021 China Lemian Liu, Aquatic Ecohealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021 China Wenjing Zhang, State Key Laboratory of Marine Environmental Science, Marine Biodiversity and Global Change Center, College of Ocean and Earth Sciences, Xiamen University, 108 Daxue Road, Xiamen, 361005 China Peiyong Guo, Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021 Fujian, China Journal Environmental Science and Pollution Research Online ISSN 1614-7499 Print ISSN 0944-1344 Journal Volume Volume 19 Journal Issue Volume 19, Number 5
    Print ISSN: 0944-1344
    Electronic ISSN: 1614-7499
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-07-19
    Description:    This paper reviewed 42 studies of how local knowledge contributes to adaptation to climate and climate change in the Asia-Pacific Region. Most studies focused on traditional ecological or indigenous knowledge. Three simple questions were addressed: (1) How are changes in climate recognized? (2) What is known about how to adapt to changes in climate? (3) How do people learn about how to adapt? Awareness of change is an important element of local knowledge. Changes in climate are recognized at multiple time scales from observations that warn of imminent extreme weather through expectations for the next season to identification of multi-year historical trends. Observations are made of climate, its impact on physical resources, and bio-indicators. Local knowledge about how to adapt can be divided into four major classes: land and water management, physical infrastructure, livelihood strategies, and social institutions. Adaptation actions vary with time scale of interest from dealing with risks of disaster from extreme weather events, through slow onset changes such as seasonal droughts, to dealing with long-term multi-year shifts in climate. Local knowledge systems differ in the capacities and ways in which they support learning. Many are dynamic and draw on information from other places, whereas others are more conservative and tightly institutionalized. Past experience of events and ways of learning may be insufficient for dealing with a novel climate. Once the strengths and limitations of local knowledge (like those of science) are grasped the opportunities for meaningful hybridization of scientific and local knowledge for adaptation expand. Content Type Journal Article Pages 1-20 DOI 10.1007/s11027-012-9407-1 Authors Louis Lebel, Unit for Social and Environmental Research, Faculty of Social Sciences, Chiang Mai University, Chiang Mai, 50200 Thailand Journal Mitigation and Adaptation Strategies for Global Change Online ISSN 1573-1596 Print ISSN 1381-2386
    Print ISSN: 1381-2386
    Electronic ISSN: 1573-1596
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...