GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Canadian Science Publishing  (2)
  • 2010-2014  (2)
  • 2011  (2)
Material
Publisher
  • Canadian Science Publishing  (2)
Language
Years
  • 2010-2014  (2)
Year
  • 2011  (2)
Subjects(RVK)
  • 1
    In: Canadian Journal of Zoology, Canadian Science Publishing, Vol. 89, No. 5 ( 2011-05), p. 435-451
    Abstract: In Canada, habitat loss has pushed many more species to the brink of extinction than expected in a region with extensive wilderness. However, species richness gradients depend strongly on climate, so species are concentrated in southern regions, where agricultural and urban land uses are both intensive and extensive. Agricultural pesticide use is associated with increasing rates of species endangerment in the south, but long-range transport of persistent organic pollutants is an emerging issue in remote northern regions. Because their distributions reflect climate so strongly, climate change threatens species throughout Canada. Evidence indicates that species’ distributions, phenologies, and interactions with pests and diseases are changing more rapidly in response to climate change than global mean values. Nevertheless, climate change is expected to impose dispersal requirements that surpass species’ maximum rates. Habitat losses may interact with climate change to impair species’ dispersal still further, creating the potential for widespread disruption of biological systems in the most diverse areas of Canada. New research is urgently needed to address questions, and the ethics, around species translocation, ecosystem engineering to anticipate future environmental conditions, and strategies to facilitate the persistence of rare species in landscapes dominated by human activities.
    Type of Medium: Online Resource
    ISSN: 0008-4301 , 1480-3283
    RVK:
    Language: English
    Publisher: Canadian Science Publishing
    Publication Date: 2011
    detail.hit.zdb_id: 1490831-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Canadian Science Publishing ; 2011
    In:  Canadian Journal of Animal Science Vol. 91, No. 1 ( 2011-03), p. 1-35
    In: Canadian Journal of Animal Science, Canadian Science Publishing, Vol. 91, No. 1 ( 2011-03), p. 1-35
    Abstract: Hristov, A. N., Hanigan, M., Cole, A., Todd, R., McAllister T. A., Ndegwa, P. and Rotz, A. 2011. Review: Ammonia emissions from dairy farms and beef feedlots. Can. J. Anim. Sci. 91: 1–35. Ammonia emitted from animal feeding operations is an environmental and human health hazard, contributing to eutrophication of surface waters and nitrate contamination of ground waters, soil acidity, and fine particulate matter formation. It may also contribute to global warming through nitrous oxide formation. Along with these societal concerns, ammonia emission is a net loss of manure fertilizer value to the producer. A significant portion of cattle manure nitrogen, primarily from urinary urea, is converted to ammonium and eventually lost to the atmosphere as ammonia. Determining ammonia emissions from cattle operations is complicated by the multifaceted nature of the factors regulating ammonia volatilization, such as manure management, ambient temperature, wind speed, and manure composition and pH. Approaches to quantify ammonia emissions include micrometeorological methods, mass balance accounting and enclosures. Each method has its advantages, disadvantages and appropriate application. It is also of interest to determine the ammonia emitting potential of manure (AEP) independent of environmental factors. The ratio of nitrogen to non-volatile minerals (phosphorus, potassium, ash) or nitrogen isotopes ratio in manure has been suggested as a useful indicator of AEP. Existing data on ammonia emission factors and flux rates are extremely variable. For dairy farms, emission factors from 0.82 to 250 g ammonia per cow per day have been reported, with an average of 59 g per cow per day (n=31). Ammonia flux rates for dairy farms averaged 1.03 g m −2 h −1 (n=24). Ammonia losses are significantly greater from beef feedlots, where emission factors average 119 g per animal per day (n=9) with values as high as 280 g per animal per day. Ammonia flux rate for beef feedlots averaged 0.174 g m −2 h −1 (n=12). Using nitrogen mass balance approaches, daily ammonia nitrogen losses of 25 to 50% of the nitrogen excreted in manure have been estimated for dairy cows and feedlot cattle. Practices to mitigate ammonia emissions include reducing excreted N (particularly urinary N), acidifying ammonia sources, or binding ammonium to a substrate. Reducing crude protein concentration in cattle diets and ruminal protein degradability are powerful tools for reducing N excretion, AEP, and whole-farm ammonia emissions. Reducing dietary protein can also benefit the producer by reducing feed cost. These interventions, however, have to be balanced with the risk of lost production. Manure treatment techniques that reduce volatile N species (e.g., urease inhibition, pH reduction, nitrification-denitrification) are also effective for mitigating ammonia emissions. Another option for reducing ammonia emissions is capture and treatment of released ammonia. Examples in the latter category include biofilters, permeable and impermeable covers, and manure incorporation into the soil for crop or pasture production. Process-level simulation of ammonia formation and emission provides a useful tool for estimating emissions over a wide range of production practices and evaluating the potential benefits of mitigation strategies. Reducing ammonia emissions from dairy and beef cattle operations is critical to achieving environmentally sustainable animal production that will benefit producers and society at large.
    Type of Medium: Online Resource
    ISSN: 0008-3984 , 1918-1825
    Language: English
    Publisher: Canadian Science Publishing
    Publication Date: 2011
    detail.hit.zdb_id: 2016977-2
    SSG: 22
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...