GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • Articles  (21)
  • 2020-2022
  • 2010-2014  (21)
  • 2011  (21)
  • Biology  (11)
  • Energy, Environment Protection, Nuclear Power Engineering  (11)
  • 1
    Publication Date: 2011-09-10
    Description: Purpose   At present, many urban areas in Mediterranean climates are coping with water scarcity, facing a growing water demand and a limited conventional water supply. Urban design and planning has so far largely neglected the benefits of rainwater harvesting (RWH) in the context of a sustainable management of this resource. Therefore, the purpose of this study was to identify the most environmentally friendly strategy for rainwater utilization in Mediterranean urban environments of different densities. Materials and methods   The RWH systems modeled integrate the necessary infrastructures for harvesting and using rainwater in newly constructed residential areas. Eight scenarios were defined in terms of diffuse (D) and compact (C) urban models and the tank locations ((1) underground tank, (2) below-roof tank, (3) distributed-over-roof tank, and (4) block tank). The structural and hydraulic sizing of the catchment, storage, and distribution subsystems was taken into account using an average Mediterranean rainfall, the area of the harvesting surfaces, and a constant water demand for laundry. The quantification of environmental impacts was performed through a life cycle assessment, using CML 2001 Baseline method. The necessary materials and processes were considered in each scenario according to the lifecycle stages (i.e., materials, construction, transportation, use, and deconstruction) and subsystems. Results and discussion   The environmental characterization indicated that the best scenario in both urban models is the distributed-over-roof tank (D3, C3), which provided a reduction in impacts compared to the worst scenario of up to 73% in diffuse models and even higher in compact ones, 92% in the most dramatic case. The lower impacts are related to the better distribution of tank weight on the building, reducing the reinforcement requirements, and enabling energy savings. The storage subsystem and the materials stage contributed most significantly to the impacts in both urban models. In the compact density model, the underground-tank scenario (C1) presented the largest impacts in most categories due to its higher energy consumption. Additionally, more favorable environmental results were observed in compact densities than in diffuse ones for the Global Warming Potential category along with higher water efficiencies. Conclusions   The implementation of one particular RWH scenario over another is not irrelevant in drought-stress environments. Selecting the most favorable scenario in the development of newly constructed residential areas provides significant savings in CO 2 emissions in comparison with retrofit strategies. Therefore, urban planning should consider the design of RWH infrastructures using environmental criteria in addition to economic, social, and technological factors, adjusting the design to the potential uses for which the rainwater is intended. Recommendations and perspectives   Additional research is needed to quantify the energy savings associated with the insulation caused by using the tank distributed over the roof. The integration of the economic and social aspects of these infrastructures in the analysis, from a life cycle approach, is necessary for targeting the planning and design of more sustainable cities in an integrated way. Content Type Journal Article Category WATER USE IN LCA Pages 1-18 DOI 10.1007/s11367-011-0330-6 Authors Sara Angrill, Sostenipra (ICTA-IRTA-Inèdit), Institute of Environmental Science and Technology (ICTA), School of Engineering (EE), Universitat Autònoma de Barcelona (UAB), Campus of the UAB, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Catalonia, Spain Ramon Farreny, Sostenipra (ICTA-IRTA-Inèdit), Institute of Environmental Science and Technology (ICTA), School of Engineering (EE), Universitat Autònoma de Barcelona (UAB), Campus of the UAB, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Catalonia, Spain Carles M. Gasol, Sostenipra (ICTA-IRTA-Inèdit), Institute of Environmental Science and Technology (ICTA), School of Engineering (EE), Universitat Autònoma de Barcelona (UAB), Campus of the UAB, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Catalonia, Spain Xavier Gabarrell, Sostenipra (ICTA-IRTA-Inèdit), Institute of Environmental Science and Technology (ICTA), School of Engineering (EE), Universitat Autònoma de Barcelona (UAB), Campus of the UAB, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Catalonia, Spain Bernat Viñolas, Department of Geotechnical Engineering and Geosciences, School of Civil Engineering (ETSECCPB), Technical University of Catalonia—Barcelona Tech (UPC), Campus Nord, C/ Jordi Girona 1-3, Building D2, 08034 Barcelona, Catalonia, Spain Alejandro Josa, Department of Geotechnical Engineering and Geosciences, School of Civil Engineering (ETSECCPB), Technical University of Catalonia—Barcelona Tech (UPC), Campus Nord, C/ Jordi Girona 1-3, Building D2, 08034 Barcelona, Catalonia, Spain Joan Rieradevall, Sostenipra (ICTA-IRTA-Inèdit), Institute of Environmental Science and Technology (ICTA), School of Engineering (EE), Universitat Autònoma de Barcelona (UAB), Campus of the UAB, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Catalonia, Spain Journal The International Journal of Life Cycle Assessment Online ISSN 1614-7502 Print ISSN 0948-3349
    Print ISSN: 0948-3349
    Electronic ISSN: 1614-7502
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Economics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-05-05
    Description:    Globally, urban growth will add 1.5 billion people to cities by 2030, making the difficult task of urban water provisions even more challenging. In this article, we develop a conceptual framework of urban water provision as composed of three axes: water availability, water quality, and water delivery. For each axis, we calculate quantitative proxy measures for all cities with more than 50,000 residents, and then briefly discuss the strategies cities are using in response if they are deficient on one of the axes. We show that 523 million people are in cities where water availability may be an issue, 890 million people are in cities where water quality may be an issue, and 1.3 billion people are in cities where water delivery may be an issue. Tapping into groundwater is a widespread response, regardless of the management challenge, with many cities unsustainably using this resource. The strategies used by cities deficient on the water delivery axis are different than for cities deficient on the water quantity or water quality axis, as lack of financial resources pushes cities toward a different and potentially less effective set of strategies. Content Type Journal Article Pages 1-10 DOI 10.1007/s13280-011-0152-6 Authors Robert I. McDonald, Worldwide Office, The Nature Conservancy, 4245 N. Fairfax Drive, Arlington, VA 22203, USA Ian Douglas, School of Environment and Development, University of Manchester, Oxford Road, Manchester, M13 9PL UK Carmen Revenga, Worldwide Office, The Nature Conservancy, 4245 N. Fairfax Drive, Arlington, VA 22203, USA Rebecca Hale, School of Life Sciences, Arizona State University, 1711 South Rural Road, Tempe, AZ 85287, USA Nancy Grimm, Faculty of Ecology, Evolution, & Environmental Science, Arizona State University, 1711 South Rural Road, Tempe, AZ 85287, USA Jenny Grönwall, 110 Marlyn Lodge, Portsoken St, London, E1 8RB UK Balazs Fekete, CUNY Research Foundation, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA Journal AMBIO: A Journal of the Human Environment Online ISSN 1654-7209 Print ISSN 0044-7447
    Print ISSN: 0044-7447
    Electronic ISSN: 1654-7209
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer on behalf of The Royal Swedish Academy of Sciences.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-05-22
    Description:    Reduce, reuse, and recycle (3R) policies form the basis of waste management and global warming countermeasures globally, so we conducted a comparative study of 3R and waste management policies in the European Union (EU), USA, Korea, Japan, China, and Vietnam. An international workshop for 3R and waste management policymakers was held in Kyoto, Japan, and a bibliographic survey was also conducted to collect data. 3R policies are clearly given priority in the hierarchy of waste management in every country studied. Thermal recovery, which includes power generation from waste heat and methane gas collected from organic waste, is also a priority; this is consistent with the increased use of countermeasures to reduce greenhouse gas (GHG) emissions. In the EU, waste management is characterized by practical and effective 3R policies through the development of realistic regulations and by the policymakers’ desire to simplify management systems. The policy ideal in China, however, is the development of a circular economy that targets reductions in the amount and hazardousness of waste. Limits on the number of final disposal sites, strategies for procuring resources, and GHG emission countermeasures are closely linked with 3R policies, and further development of 3R policies in parallel with such issues is expected. Content Type Journal Article Pages 1-17 DOI 10.1007/s10163-011-0009-x Authors Shin-ichi Sakai, Environment Preservation Research Center, Kyoto University, Kyoto, 606-8501 Japan Hideto Yoshida, Japan Environmental Safety Corporation, Tokyo, Japan Yasuhiro Hirai, Environment Preservation Research Center, Kyoto University, Kyoto, 606-8501 Japan Misuzu Asari, Environment Preservation Research Center, Kyoto University, Kyoto, 606-8501 Japan Hidetaka Takigami, Research Center for Material Cycles and Waste Management, National Institute for Environmental Studies, Tsukuba, Japan Shin Takahashi, Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan Keijirou Tomoda, Towa Technology, Hiroshima, Japan Maria Victoria Peeler, Hazardous Waste and Toxics Reduction, Washington State Department of Ecology, Olympia, WA, USA Jakub Wejchert, Sector in Unit G.4, Sustainable Production and Consumption, DG Environment, European Commission, Brussels, Belgium Thomas Schmid-Unterseh, Division of Product Responsibility, Avoidance, Recovery and Utilization of Product Waste, Federal Ministry for the Environment, Berlin, Germany Aldo Ravazzi Douvan, Italian Environmental Authority for EU Structural Funds, Ministry for the Environment Land and Sea, Rome, Italy Roy Hathaway, Waste Management Division, Department of Environment, Food and Rural Affairs, London, UK Lars D. Hylander, Department of Earth Sciences, Air and Water Science, Uppsala University, Uppsala, Sweden Christian Fischer, European Topic Centre on Sustainable Consumption and Production, Copenhagen, Denmark Gil Jong Oh, Resource Recirculation Center, National Institute of Environmental Research, Incheon, Korea Li Jinhui, Department of Environmental Science and Engineering, Tsinghua University, Beijing, China Ngo Kim Chi, Union for Scientific Research and Production on Chemical Engineering, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam Journal Journal of Material Cycles and Waste Management Online ISSN 1611-8227 Print ISSN 1438-4957
    Print ISSN: 1438-4957
    Electronic ISSN: 1611-8227
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-09-13
    Description:    The condition of many wetlands across Australia has deteriorated due to increased water regulation and the expansion and intensification of agriculture and increased urban and industrial expansion. Despite this situation, a comprehensive overview of the distribution and condition of wetlands across Australia is not available. Regional analyses exist and several exemplary mapping and monitoring exercises have been maintained to complement the more general information sets. It is expected that global climate change will exacerbate the pressures on inland wetlands, while sea level rises will adversely affect coastal wetlands. It is also expected that the exacerbation of these pressures will increase the potential for near-irreversible changes in the ecological state of some wetlands. Concerted institutional responses to such pressures have in the past proven difficult to sustain, although there is some evidence that a more balanced approach to water use and agriculture is being developed with the provision of increasing funds to purchase water for environmental flows being one example. We identify examples from around Australia that illustrate the impacts on wetlands of long-term climate change from palaeoecological records (south-eastern Australia); water allocation (Murray-Darling Basin); dryland salinisation (south-western Australia); and coastal salinisation (northern Australia). These are provided to illustrate both the extent of change in wetlands and the complexity of differentiating the specific effects of climate change. An appraisal of the main policy responses by government to climate change is provided as a basis for further considering the opportunities for mitigation and adaptation to climate change. Content Type Journal Article Category Effects of Climate Change on Wetlands Pages 1-21 DOI 10.1007/s00027-011-0232-5 Authors C. M. Finlayson, Institute for Land, Water and Society, Charles Sturt University, PO Box 789, Albury, NSW 2640, Australia J. A. Davis, School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia P. A. Gell, Centre for Environmental Management, School of Science and Engineering, University of Ballarat, PO Box 663, Ballarat, VIC 3353, Australia R. T. Kingsford, Australian Rivers and Wetland Centre, University of New South Wales, Sydney, Australia K. A. Parton, Institute for Land, Water and Society, Charles Sturt University, PO Box 883, Orange, NSW 2800, Australia Journal Aquatic Sciences - Research Across Boundaries Online ISSN 1420-9055 Print ISSN 1015-1621
    Print ISSN: 1015-1621
    Electronic ISSN: 1420-9055
    Topics: Biology
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-29
    Description:    The emerging interest in the biological and conservation significance of locally rare species prompts a number of questions about their correspondence with other categories of biodiversity, especially global rarity. Here we present an analysis of the correspondence between the distributions of globally and locally rare plants. Using biological hotspots of rarity as our framework, we evaluate the extent to which conservation of globally rare plants will act as a surrogate for conservation of locally rare taxa. Subsequently, we aim to identify gaps between rarity hotspots and protected land to guide conservation planning. We compiled distribution data for globally and locally rare plants from botanically diverse Napa County, California into a geographic information system. We then generated richness maps highlighting hotspots of global and local rarity. Following this, we overlaid the distribution of these hotspots with the distribution of protected lands to identify conservation gaps. Based on occupancy of 1 km 2 grid cells, we found that over half of Napa County is occupied by at least one globally or locally rare plant. Hotspots of global and local rarity occurred in a substantially smaller portion of the county. Of these hotspots, less than 5% were classified as multi-scale hotspots, i.e. they were hotspots of global and local rarity. Although, several hotspots corresponded with the 483 km 2 of protected lands in Napa County, some of the richest areas did not. Thus, our results show that there are important conservation gaps in Napa County. Furthermore, if only hotspots of global rarity are preserved, only a subset of locally rare plants will be protected. Therefore, conservation of global, local, and multi-scale hotspots needs serious consideration if the goals are to protect a larger variety of biological attributes, prevent extinction, and limit extirpation in Napa County. Content Type Journal Article Category Original Paper Pages 1-12 DOI 10.1007/s10531-011-0137-6 Authors Benjamin J. Crain, Department of Biological Sciences, Humboldt State University, 1 Harpst Street, Arcata, CA 95521, USA Jeffrey W. White, Department of Biological Sciences, Humboldt State University, 1 Harpst Street, Arcata, CA 95521, USA Steven J. Steinberg, Department of Environmental Science and Management, Humboldt State University, 1 Harpst Street, Arcata, CA 95521, USA Journal Biodiversity and Conservation Online ISSN 1572-9710 Print ISSN 0960-3115
    Print ISSN: 0960-3115
    Electronic ISSN: 1572-9710
    Topics: Biology
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-01-02
    Description:    Within climate change impact research, the consideration of socioeconomic processes remains a challenge. Socioeconomic systems must be equipped to react and adapt to global change. However, any reasonable development or assessment of sustainable adaptation strategies requires a comprehensive consideration of human-environment interactions. This requirement can be met through multi-agent simulation, as demonstrated in the interdisciplinary project GLOWA-Danube (GLObal change of the WAter Cycle; www.glowa-danube.de ). GLOWA-Danube has developed an integrated decision support tool for water and land use management in the Upper Danube catchment (parts of Germany and Austria, 77,000 km 2 ). The scientific disciplines invoked in the project have implemented sixteen natural and social science models, which are embedded in the simulation framework DANUBIA. Within DANUBIA, a multi-agent simulation approach is used to represent relevant socioeconomic processes. The structure and results of three of these multi-agent models, WaterSupply, Household and Tourism, are presented in this paper. A main focus of the paper is on the development of global change scenarios (climate and society) and their application to the presented models. The results of different simulation runs demonstrate the potential of multi-agent models to represent feedbacks between different water users and the environment. Moreover, the interactive usage of the framework allows to define and vary scenario assumptions so as to assess the impact of potential interventions. It is shown that integrated modelling and scenario design not only provide valuable information, but also offer a platform for discussing complex human-environment-interactions with stakeholders. Content Type Journal Article DOI 10.1007/s11027-010-9274-6 Authors Anja Soboll, Department of Geography, University of Munich, Luisenstrasse 37, 80333 Munich, Germany Michael Elbers, Center for Environmental Systems Research, University of Kassel, Kurt-Wolters-Strasse 3, 34109 Kassel, Germany Roland Barthel, Institute of Hydraulic Engineering, University of Stuttgart, Pfaffenwaldring 7a, 70569 Stuttgart, Germany Juergen Schmude, Department of Geography, University of Munich, Luisenstrasse 37, 80333 Munich, Germany Andreas Ernst, Center for Environmental Systems Research, University of Kassel, Kurt-Wolters-Strasse 3, 34109 Kassel, Germany Ralf Ziller, Institute of Hydraulic Engineering, University of Stuttgart, Pfaffenwaldring 7a, 70569 Stuttgart, Germany Journal Mitigation and Adaptation Strategies for Global Change Online ISSN 1573-1596 Print ISSN 1381-2386
    Print ISSN: 1381-2386
    Electronic ISSN: 1573-1596
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-07-07
    Description: The field of ecoinformatics provides concepts, methods and standards to guide management and analysis of ecological data with particular emphasis on exploration of co-occurrences of organisms and their linkage to environmental conditions and taxon attributes. In this editorial, introducing the Special Feature ‘Ecoinformatics and global change’, we reflect on the development of ecoinformatics and explore its importance for future global change research with special focus on vegetation-plot data. We show how papers in this Special Feature illustrate important directions and approaches in this emerging field. We suggest that ecoinformatics has the potential to make profound contributions to pure and applied sciences, and that the analyses, databases, meta-databases, data exchange formats and analytical tools presented in this Special Feature advance this approach to vegetation science and illustrate and address important open questions. We conclude by describing important future directions for the development of the field including incentives for data sharing, creation of tools for more robust statistical analysis, utilities for integration of data that conform to divergent taxonomic standards, and databases that provide detailed plot-specific data so as to allow users to find and access data appropriate to their research needs.
    Print ISSN: 1100-9233
    Electronic ISSN: 1654-1103
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-11-24
    Description: Welcomme, R. L. 2011. An overview of global catch statistics for inland fish. – ICES Journal of Marine Science, 68: 1751–1756. The reported global inland fish catch passed 10 million tonnes in 2008, after almost linear growth from the early 1950s. The rise coincides with an increasing number of reports of falling catches resulting from environmental degradation. It is thought that catches from inland waters were underreported in the past because of constraints on collecting the relevant data. National approaches to data collection are not generally comparable and their accuracy not usually assessed. National data processing and reporting should be audited, and training undertaken to harmonize these activities. The apparently bigger catches probably result from better reporting of actual catches rather than any increase in the amount of fish landed. Current data are sufficient only for a general overview of global inland catches of fish, rather than for the detailed analysis needed for management, policy formulation, and the valuation of inland fisheries. There is a need for improved approaches to data collection and for historical catches to be corrected to account for changes in methodologies and reporting procedures.
    Print ISSN: 1054-3139
    Electronic ISSN: 1095-9289
    Topics: Biology , Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-07-16
    Description:    High rates of urbanization, environmental degradation, and industrial development have affected all nations worldwide, but in disaster-prone areas, the impact is even greater serving to increase the extent of damage from natural catastrophes. As a result of the global nature of environmental change, modern economies have had to adapt, and sustainability is an extremely important issue. Clearly, natural disasters will affect the competitiveness of an enterprise. This study focuses on natural disaster management in an area in which the direct risks are posed by the physical effects of natural disasters such as floods, droughts, tsunamis, and rising sea levels. On a local level, the potential impact of a disaster on a company and how much damage (loss) it causes to facilities and future business are of concern. Each company must make plans to mitigate predictable risk. Risk assessments must be completed in a timely manner. Disaster management is also very important to national policy. Natural disaster management mechanisms can include strategies for disaster prevention, early warning (prediction) systems, disaster mitigation, preparedness and response, and human resource development. Both governmental administration (public) and private organizations should participate in these programs. Participation of the local community is especially important for successful disaster mitigation, preparation for, and the implementations of such measures. Our focus in this study is a preliminary proposal for developing an efficient probabilistic approach to facilitate design optimization that involves probabilistic constraints. Content Type Journal Article Pages 1-9 DOI 10.1007/s11069-011-9889-2 Authors Chun-Pin Tseng, Chung Shan Institute of Science and Technology, Armaments Bureau, Taoyuan, Taiwan Cheng-Wu Chen, Institute of Maritime Information and Technology, National Kaohsiung Marine University, Kaohsiung, 80543 Taiwan Journal Natural Hazards Online ISSN 1573-0840 Print ISSN 0921-030X
    Print ISSN: 0921-030X
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geography , Geosciences
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-03-30
    Description:    Nitrous oxide (N 2 O) emissions from grazed grasslands are estimated to be approximately 28% of global anthropogenic N 2 O emissions. Estimating the N 2 O flux from grassland soils is difficult because of its episodic nature. This study aimed to quantify the N 2 O emissions, the annual N 2 O flux and the emission factor (EF), and also to investigate the influence of environmental and soil variables controlling N 2 O emissions from grazed grassland. Nitrous oxide emissions were measured using static chambers at eight different grasslands in the South of Ireland from September 2007 to August 2009. The instantaneous N 2 O flux values ranged from -186 to 885.6 μg N 2 O-N m −2  h −1 and the annual sum ranged from 2 ± 3.51 to 12.55 ± 2.83 kg N 2 O-N ha −1  y −1 for managed sites. The emission factor ranged from 1.3 to 3.4%. The overall EF of 1.81% is about 69% higher than the Intergovernmental Panel on Climate Change (IPCC) default EF value of 1.25% which is currently used by the Irish Environmental Protection Agency (EPA) to estimate N 2 O emission in Ireland. At an N applied of approximately 300 kg ha −1  y −1 , the N 2 O emissions are approximately 5.0 kg N 2 O-N ha −1 y −1 , whereas the N 2 O emissions double to approximately 10 kg N ha −1 for an N applied of 400 kg N ha −1  y −1 . The sites with higher fluxes were associated with intensive N-input and frequent cattle grazing. The N 2 O flux at 17°C was five times greater than that at 5°C. Similarly, the N 2 O emissions increased with increasing water filled pore space (WFPS) with maximum N 2 O emissions occurring at 60–80% WFPS. We conclude that N application below 300 kg ha −1  y −1 and restricted grazing on seasonally wet soils will reduce N 2 O emissions. Content Type Journal Article Pages 1-20 DOI 10.1007/s10021-011-9434-x Authors Rashad Rafique, Department of Civil and Environmental Engineering, Centre for Hydrology, Micrometeorology and Climate Change, University College Cork, Cork, Ireland Deirdre Hennessy, Department of Animals &, Grassland Science Research, Teagasc-Moorpark, Fermoy, Ireland Gerard Kiely, Department of Civil and Environmental Engineering, Centre for Hydrology, Micrometeorology and Climate Change, University College Cork, Cork, Ireland Journal Ecosystems Online ISSN 1435-0629 Print ISSN 1432-9840
    Print ISSN: 1432-9840
    Electronic ISSN: 1435-0629
    Topics: Biology
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...