GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (3)
  • Sahebkar, Amirhossein  (3)
  • 1
    In: Journal of Cellular Physiology, Wiley, Vol. 233, No. 2 ( 2018-02), p. 830-848
    Abstract: Curcumin is a dietary polyphenol from turmeric with numerous pharmacological activities. Novel animal and human studies indicate that curcumin can affect different immune cells, such as various T lymphocyte subsets, macrophages, dendritic cells, B lymphocytes and natural killer cells, which results in decreasing severity of various diseases with immunological etiology. The present review provides a comprehensive overview of the effects of curcumin on different immune cells and immune system‐related diseases.
    Type of Medium: Online Resource
    ISSN: 0021-9541 , 1097-4652
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 1478143-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Cellular Physiology, Wiley, Vol. 234, No. 11 ( 2019-11), p. 19320-19330
    Abstract: Turmeric extracts contain three primary compounds, which are commonly referred to as curcuminoids. They are curcumin, demethoxycurcumin (DMC), and bisdemethoxycurcumin. While curcumin has been the most extensively studied of the curcuminoids, it suffers from low overall oral bioavailability due to extremely low absorption as a result of low water solubility and instability at acidic pH, as well as rapid metabolism and clearance from the body. However, DMC, which lacks the methoxy group on the benzene ring of the parent structure, has much greater chemical stability at physiological pH and has been recently reported to exhibit antitumor properties. However, the treatment of noncancerous diseases with DMC has not been comprehensively reviewed. Therefore, here we evaluate published scientific literature on the therapeutic properties of DMC. The beneficial pharmacological actions of DMC include anti‐inflammatory, neuroprotective, antihypertensive, antimalarial, antimicrobial, antifungal, and vasodilatory properties. In addition, DMC's ability to ameliorate the effects of free radicals and an environment characterized by oxidative stress caused by the accumulation of advanced glycation end‐products associated with diabetic nephropathy, as well as DMC's capacity to inhibit the migration and proliferation of vascular smooth muscle cells following balloon angioplasty are also addressed. This review collates the available literature regarding the therapeutic possibilities of DMC in noncancerous conditions.
    Type of Medium: Online Resource
    ISSN: 0021-9541 , 1097-4652
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 1478143-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Wiley ; 2019
    In:  Journal of Cellular Physiology Vol. 234, No. 5 ( 2019-05), p. 5643-5654
    In: Journal of Cellular Physiology, Wiley, Vol. 234, No. 5 ( 2019-05), p. 5643-5654
    Abstract: Autophagy is a self‐degradative process that plays a pivotal role in several medical conditions associated with infection, cancer, neurodegeneration, aging, and metabolic disorders. Its interplay with cancer development and treatment resistance is complicated and paramount for drug design since an autophagic response can lead to tumor suppression by enhancing cellular integrity and tumorigenesis by improving tumor cell survival. In addition, autophagy denotes the cellular ability of adapting to stress though it may end up in apoptosis activation when cells are exposed to a very powerful stress. Induction of autophagy is a therapeutic option in cancer and many anticancer drugs have been developed to this aim. Curcumin as a hydrophobic polyphenol compound extracted from the known spice turmeric has different pharmacological effects in both in vitro and in vivo models. Many reports exist reporting that curcumin is capable of triggering autophagy in several cancer cells. In this review, we will focus on how curcumin can target autophagy in different cellular settings that may extend our understanding of new pharmacological agents to overcome relevant diseases.
    Type of Medium: Online Resource
    ISSN: 0021-9541 , 1097-4652
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 1478143-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...