GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • The Electrochemical Society  (5)
  • Bruce, Peter G.  (5)
Material
Publisher
  • The Electrochemical Society  (5)
Person/Organisation
Language
Years
  • 1
    Online Resource
    Online Resource
    The Electrochemical Society ; 2018
    In:  ECS Meeting Abstracts Vol. MA2018-02, No. 5 ( 2018-07-23), p. 370-370
    In: ECS Meeting Abstracts, The Electrochemical Society, Vol. MA2018-02, No. 5 ( 2018-07-23), p. 370-370
    Abstract: Interest in the rechargeable Li-O 2 battery is driven by its high theoretical specific energy (3500 Whkg -1 ). 1-2 However, a number of challenges face the realization of practical devices. 3-10 Overcoming these challenges requires an understanding of the reactions and processes in the cell, especially at the electrodes. Our focus has been on the reaction at the positive electrode: O 2 + 2e - + 2Li + = Li 2 O 2 This simple reaction belies the complexity of the problems during charge and discharge. Li 2 O 2 , is an insulating solid, if it grows on the electrode surface it can only do so to a thickness of approx. 6 to 7 nm. The resulting passivation leads to low rates and low capacities. 11 If Li 2 O 2 grows from solution, passivation is avoided, leading to high rates and capacities. 12 The solvent donor number is an important factor in controlling which pathway, surface film or solution growth, occurs. Low donor number ethers promote surface films while high donor numbers result in solution growth. Unfortunately, high donor number solvents are more susceptible to decomposition by the reactive O 2 - nucleophile (the intermediate in the O 2 /Li 2 O 2 reaction is LiO 2 ). 13 We show that using redox mediator molecules to shuttle electrons between the electrode surface and solution, Li 2 O 2 can be formed and decomposed in solution even in low donor number solvent like ethers. 14 As a result, rates and capacities of several mA and mAh cm -2 respectively are observed. The impact of the mediators on solvent and electrode stability will be discussed in the context of the mechanism of Li 2 O 2 formation and decomposition. Ultimately, the Li-O 2 cell must operate in air. The effect of H 2 O in the gas stream and hence in the electrolyte solution on the mechanism of O 2 /Li 2 O 2 and the effect on cell performance are important. The influence of H 2 O on the O 2 reduction mechanism will be considered. REFERENCES [1] D. Aurbach; B.D. McCloskey; L.F. Nazar; P.G. Bruce, Nature Energy 2016, 1 , 16128. [2] J.W. Choi; D. Aurbach, Nature Reviews Materials 2016, 1 , 16013. [3] N. Mahne; B. Schafzahl; C. Leypold; M. Leypold , et al. , Nature Energy 2017, 2 , 17036. [4] K.U. Schwenke; M. Metzger; T. Restle; M. Piana , et al. , Journal of The Electrochemical Society 2015, 162 (4), A573-A584. [5] D. Grübl; B. Bergner; D. Schröder; J. Janek , et al. , The Journal of Physical Chemistry C 2016, 120 (43), 24623-24636. [6] H.-D. Lim; B. Lee; Y. Zheng; J. Hong , et al. , Nature Energy 2016, 1 (6), 16066. [7] B.D. McCloskey; D. Addison, ACS Catalysis 2017, 7 (1), 772-778. [8] S. Ganapathy; J.R. Heringa; M.S. Anastasaki; B.D. Adams , et al. , The Journal of Physical Chemistry Letters 2016 . [9] A.I. Belova; D.G. Kwabi; L.V. Yashina; Y. Shao-Horn , et al. , The Journal of Physical Chemistry C 2017, 121 (3), 1569-1577. [10] D. Krishnamurthy; H.A. Hansen; V. Viswanathan, ACS Energy Letters 2016, 1 (1), 162-168. [11] V. Viswanathan; K.S. Thygesen; J.S. Hummelshoj; J.K. Norskov , et al. , Journal of Chemical Physics 2011, 135 (21), 214704. [12] L. Johnson; C. Li; Z. Liu; Y. Chen , et al. , Nature Chemistry 2014, 6 (12), 1091-1099. [13] A. Khetan; A. Luntz; V. Viswanathan, The Journal of Physical Chemistry Letters 2015, 6 (7), 1254-1259. [14] X. Gao; Y. Chen; L.R. Johnson; Z.P. Jovanov , et al. , Nature Energy 2017, 2 , 17118.
    Type of Medium: Online Resource
    ISSN: 2151-2043
    Language: Unknown
    Publisher: The Electrochemical Society
    Publication Date: 2018
    detail.hit.zdb_id: 2438749-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    The Electrochemical Society ; 2017
    In:  ECS Meeting Abstracts Vol. MA2017-02, No. 5 ( 2017-09-01), p. 454-454
    In: ECS Meeting Abstracts, The Electrochemical Society, Vol. MA2017-02, No. 5 ( 2017-09-01), p. 454-454
    Abstract: Li-ion and related battery technologies will be important for years to come. However, we must explore alternatives if we are to have any hope of meeting the long-term needs for energy storage. One such alternative is the metal-O 2 battery; the theoretical specific energy of typical aprotic metal-O 2 batteries exceeds that of Li-ion, but many obstacles hinder realization of this technology.[1-4] Overcoming these hurdles will require an understanding of the fundamental electrochemistry at the positive electrode within aprotic metal-air batteries.[5-12] Recently interest in the Na-O 2 battery has grown due to the relatively low polarization during cycling and the high rates.[13, 14] This is despite the lower specific energy of this battery chemistry.[15] A number of groups have shown promising results with this system.[16-18] An important area of contention is the nature of the discharge product, which, unlike the lithium system that forms Li 2 O 2 , may form the superoxide, peroxide or oxide. The discharge product in the metal-O 2  battery directly influences the specific capacity and ease of charge. Therefore, it is important to understand the mechanism such that this can be controlled. We have combined a range of electrochemical, spectroscopic and microscopy methods to investigate the mechanism of electrochemical O 2 reduction. The results of these studies will be presented, along with the implications for the future of rechargeable metal-O 2  batteries. References: 1. Bruce, P.G., et al., Li-O 2 and Li-S batteries with high energy storage. Nature Materials, 2012. 11 (1): p. 19-29. 2. Lu, Y.C., et al., Lithium-oxygen batteries: bridging mechanistic understanding and battery performance. Energy & Environmental Science, 2013. 6 (3): p. 750-768. 3. Girishkumar, G., et al., Lithium−air battery: promise and challenges. The Journal of Physical Chemistry Letters, 2010. 1 (14): p. 2193-2203. 4. Li, F., T. Zhang, and H. Zhou, Challenges of non-aqueous Li-O 2 batteries: electrolytes, catalysts, and anodes. Energy & Environmental Science, 2013. 6 (4): p. 1125-1141. 5. Adams, B.D., et al., Current density dependence of peroxide formation in the Li-O 2 battery and its effect on charge. Energy & Environmental Science, 2013. 6 (6): p. 1772-1778. 6. Horstmann, B., et al., Rate-Dependent Morphology of Li2O2 Growth in Li–O2 Batteries. The Journal of Physical Chemistry Letters, 2013. 4 (24): p. 4217-4222. 7. Hummelshoj, J.S., A.C. Luntz, and J.K. Norskov, Theoretical evidence for low kinetic overpotentials in Li-O2 electrochemistry. The Journal of Chemical Physics, 2013. 138 (3): p. 034703-12. 8. McCloskey, B.D., et al., On the mechanism of nonaqueous Li–O 2 electrochemistry on C and its kinetic overpotentials: Some implications for Li–air batteries. The Journal of Physical Chemistry C, 2012. 116 (45): p. 23897-23905. 9. Mitchell, R.R., et al., Mechanisms of Morphological Evolution of Li2O2 Particles During Electrochemical Growth. The Journal of Physical Chemistry Letters, 2013. 4 (7): p. 1060–1064. 10. Trahan, M.J., et al., Studies of Li-Air Cells Utilizing Dimethyl Sulfoxide-Based Electrolyte. Journal of The Electrochemical Society, 2013. 160 (2): p. A259-A267. 11. Jung, H.G., et al., A transmission electron microscopy study of the electrochemical process of lithium-oxygen cells. Nano Letters, 2012. 12 (8): p. 4333-5. 12. Zhai, D., et al., Disproportionation in li-o2 batteries based on a large surface area carbon cathode. Journal of the American Chemical Society, 2013. 135 (41): p. 15364-72. 13. Hartmann, P., et al., A rechargeable room-temperature sodium superoxide (NaO2) battery. Nature Materials, 2013. 12 (3): p. 228-232. 14. McCloskey, B.D., J.M. Garcia, and A.C. Luntz, Chemical and Electrochemical Differences in Nonaqueous Li-O-2 and Na-O-2 Batteries. Journal of Physical Chemistry Letters, 2014. 5 (7): p. 1230-1235. 15. Das, S.K., S. Lau, and L.A. Archer, Sodium-oxygen batteries: a new class of metal-air batteries. Journal of Materials Chemistry A, 2014. 2 (32): p. 12623-12629. 16. Hartmann, P., et al., Discharge and Charge Reaction Paths in Sodium–Oxygen Batteries: Does NaO2Form by Direct Electrochemical Growth or by Precipitation from Solution? The Journal of Physical Chemistry C, 2015. 119 (40): p. 22778-22786. 17. Xia, C., et al., The critical role of phase-transfer catalysis in aprotic sodium oxygen batteries. Nat Chem, 2015. 7 (6): p. 496-501. 18. Lutz, L., et al., High Capacity Na–O2 Batteries: Key Parameters for Solution-Mediated Discharge. The Journal of Physical Chemistry C, 2016. 120 (36): p. 20068-20076. Figure 1
    Type of Medium: Online Resource
    ISSN: 2151-2043
    Language: Unknown
    Publisher: The Electrochemical Society
    Publication Date: 2017
    detail.hit.zdb_id: 2438749-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    The Electrochemical Society ; 2016
    In:  ECS Meeting Abstracts Vol. MA2016-03, No. 2 ( 2016-06-10), p. 378-378
    In: ECS Meeting Abstracts, The Electrochemical Society, Vol. MA2016-03, No. 2 ( 2016-06-10), p. 378-378
    Abstract: Li-ion and related battery technologies will be important for years to come. However, society needs energy storage that exceeds the capacity of Li-ion batteries. We must explore alternatives to Li-ion if we are to have any hope of meeting the long-term needs for energy storage. One such alternative is the Li-air (O 2 ) battery; its theoretical specific energy exceeds that of Li-ion, but many hurdles face its realization. [1-5] One spin-off of the recent interest in rechargeable Li-O 2 batteries, based on aprotic electrolytes is that it has highlighted the importance of understanding the fundamental electrochemistry at the positive electrode within the battery. [6-15] The challenges of obtaining efficient, reversible charge and discharge are well-documented in the field.  Here, we describe how our recent studies into the electrochemical mechanism of O 2 reduction to form Li 2 O 2 at the positive electrode might allow us to design new strategies to overcome these limitations; [16] For example, exploiting the effect of solvent donor number, Fig. 1. We will describe our resent results using redox mediators to facilitate the electrochemistry along with the implications of the results for the future of rechargeable Li-O 2  batteries. REFERENCES   [1]. Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J.-M. Nature Materials 2012 , 11 , 19. [2]. Lu, Y. C.; Gallant, B. M.; Kwabi, D. G.; Harding, J. R.; Mitchell, R. R.; Whittingham, M. S.; Shao-Horn, Y. Energy & Environmental Science 2013 , 6 , 750. [3]. Black, R.; Adams, B.; Nazar, L. F. Advanced Energy Materials 2012 , 2 , 801. [4]. Girishkumar, G.; McCloskey, B.; Luntz, A. C.; Swanson, S.; Wilcke, W. The Journal of Physical Chemistry Letters 2010 , 1 , 2193. [5]. Li, F.; Zhang, T.; Zhou, H. Energy & Environmental Science 2013 , 6 , 1125. [6]. Adams, B. D.; Radtke, C.; Black, R.; Trudeau, M. L.; Zaghib, K.; Nazar, L. F. Energy & Environmental Science 2013 , 6 , 1772. [7]. Horstmann, B.; Gallant, B.; Mitchell, R.; Bessler, W. G.; Shao-Horn, Y.; Bazant, M. Z. The Journal of Physical Chemistry Letters 2013 , 4 , 4217. [8]. Hummelshoj, J. S.; Luntz, A. C.; Norskov, J. K. The Journal of Chemical Physics 2013 , 138 , 034703. [9]. McCloskey, B. D.; Scheffler, R.; Speidel, A.; Girishkumar, G.; Luntz, A. C. The Journal of Physical Chemistry C 2012 , 116 , 23897. [10]. Mitchell, R. R.; Gallant, B. M.; Shao-Horn, Y.; Thompson, C. V. The Journal of Physical Chemistry Letters 2013 , 4 , 1060. [11]. Trahan, M. J.; Mukerjee, S.; Plichta, E. J.; Hendrickson, M. A.; Abraham, K. M. Journal of The Electrochemical Society 2013 , 160 , A259. [12]. Sharon, D.; Etacheri, V.; Garsuch, A.; Afri, M.; Frimer, A. A.; Aurbach, D. The Journal of Physical Chemistry Letters 2012 , 4 , 127. [13]. Jung, H. G.; Kim, H. S.; Park, J. B.; Oh, I. H.; Hassoun, J.; Yoon, C. S.; Scrosati, B.; Sun, Y. K. Nano Letters 2012 , 12 , 4333. [14]. Peng, Z.; Freunberger, S. A.; Hardwick, L. J.; Chen, Y.; Giordani, V.; Barde, F.; Novak, P.; Graham, D.; Tarascon, J. M.; Bruce, P. G. Angewandte Chemie International Edition 2011 , 50 , 6351. [15]. Zhai, D.; Wang, H. H.; Yang, J.; Lau, K. C.; Li, K.; Amine, K.; Curtiss, L. A. Journal of the American Chemical Society 2013 , 135 , 15364. [16]. Johnson, L.; Li, C. ; Liu, Z.; Chen, Y.; Freunberger, S. A.; Ashok, P.; Praveen, B.; Dholakia, K.; Tarascon, J-M.; Bruce, P. G. Nature Chemistry 2014 , 6 , 1091. Figure 1
    Type of Medium: Online Resource
    ISSN: 2151-2043
    Language: Unknown
    Publisher: The Electrochemical Society
    Publication Date: 2016
    detail.hit.zdb_id: 2438749-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    The Electrochemical Society ; 2016
    In:  ECS Meeting Abstracts Vol. MA2016-03, No. 1 ( 2016-06-10), p. 18-18
    In: ECS Meeting Abstracts, The Electrochemical Society, Vol. MA2016-03, No. 1 ( 2016-06-10), p. 18-18
    Abstract: Li-ion and related battery technologies will be important for years to come. However, society needs energy storage that exceeds that of Li-ion batteries. We must explore alternatives to Li-ion if we are to have any hope of meeting the long-term needs for energy storage. One alternative is the Li-air (O 2 ) battery, Fig. 1; its theoretical specific energy exceeds that of Li-ion, but many hurdles face its realization. [1-5] One spin-off of the recent interest in rechargeable Li-O 2 batteries, based on aprotic electrolytes is that it has highlighted the importance of understanding the fundamental oxygen redox processes at the positive electrode within the battery. [6-15] As a result of these fundamental studies it is generally accepted that a solution growth mechanism for Li 2 O 2 will be required to achieve high rates and capacities, avoiding the formation of passivating Li 2 O 2 films on the electrode surface.  Recent results exploring the electrochemical mechanism of O 2 reduction to form Li 2 O 2 at the positive electrode have identified new strategies to achieve this by exploiting the effect of the electrolyte solution. Moving to a solution phase discharge mechanism highlights the requirement for charge mediation between the electroactive species and the electrode, thus using solid Li 2 O 2 simply as a storage material for lithium ions and electrons. The implications of this will be discussed REFERENCES [1]. Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J.-M. Nature Materials 2012 , 11 , 19. [2]. Lu, Y. C.; Gallant, B. M.; Kwabi, D. G.; Harding, J. R.; Mitchell, R. R.; Whittingham, M. S.; Shao-Horn, Y. Energy & Environmental Science 2013 , 6 , 750. [3]. Black, R.; Adams, B.; Nazar, L. F. Advanced Energy Materials 2012 , 2 , 801. [4]. Girishkumar, G.; McCloskey, B.; Luntz, A. C.; Swanson, S.; Wilcke, W. The Journal of Physical Chemistry Letters 2010 , 1 , 2193. [5]. Li, F.; Zhang, T.; Zhou, H. Energy & Environmental Science 2013 , 6 , 1125. [6]. Adams, B. D.; Radtke, C.; Black, R.; Trudeau, M. L.; Zaghib, K.; Nazar, L. F. Energy & Environmental Science 2013 , 6 , 1772. [7]. Horstmann, B.; Gallant, B.; Mitchell, R.; Bessler, W. G.; Shao-Horn, Y.; Bazant, M. Z. The Journal of Physical Chemistry Letters 2013 , 4 , 4217. [8]. Hummelshoj, J. S.; Luntz, A. C.; Norskov, J. K. The Journal of Chemical Physics 2013 , 138 , 034703. [9]. McCloskey, B. D.; Scheffler, R.; Speidel, A.; Girishkumar, G.; Luntz, A. C. The Journal of Physical Chemistry C 2012 , 116 , 23897. [10]. Mitchell, R. R.; Gallant, B. M.; Shao-Horn, Y.; Thompson, C. V. The Journal of Physical Chemistry Letters 2013 , 4 , 1060. [11]. Trahan, M. J.; Mukerjee, S.; Plichta, E. J.; Hendrickson, M. A.; Abraham, K. M. Journal of The Electrochemical Society 2013 , 160 , A259. [12]. Sharon, D.; Etacheri, V.; Garsuch, A.; Afri, M.; Frimer, A. A.; Aurbach, D. The Journal of Physical Chemistry Letters 2012 , 4 , 127. [13]. Jung, H. G.; Kim, H. S.; Park, J. B.; Oh, I. H.; Hassoun, J.; Yoon, C. S.; Scrosati, B.; Sun, Y. K. Nano Letters 2012 , 12 , 4333. [14]. Peng, Z.; Freunberger, S. A.; Hardwick, L. J.; Chen, Y.; Giordani, V.; Barde, F.; Novak, P.; Graham, D.; Tarascon, J. M.; Bruce, P. G. Angewandte Chemie International Edition 2011 , 50 , 6351. [15]. Zhai, D.; Wang, H. H.; Yang, J.; Lau, K. C.; Li, K.; Amine, K.; Curtiss, L. A. Journal of the American Chemical Society 2013 , 135 , 15364.
    Type of Medium: Online Resource
    ISSN: 2151-2043
    Language: Unknown
    Publisher: The Electrochemical Society
    Publication Date: 2016
    detail.hit.zdb_id: 2438749-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    The Electrochemical Society ; 2016
    In:  ECS Meeting Abstracts Vol. MA2016-02, No. 5 ( 2016-09-01), p. 879-879
    In: ECS Meeting Abstracts, The Electrochemical Society, Vol. MA2016-02, No. 5 ( 2016-09-01), p. 879-879
    Abstract: Li-ion and related battery technologies will be important for years to come. However, society needs energy storage that exceeds the capacity of Li-ion batteries. We must explore alternatives to Li-ion if we are to have any hope of meeting the long-term needs for energy storage. One such alternative is the Li-air (O 2 ) battery, Fig. 1; its theoretical specific energy exceeds that of Li-ion, but many hurdles face its realization. [1-5] One spin-off of the recent interest in rechargeable Li-O 2 batteries, based on aprotic electrolytes is that it has highlighted the importance of understanding the fundamental processes at the positive electrode within the battery. [6- 12 ] Based on these studies, it is generally accepted that a solution growth mechanism will be required to achieve high rates and capacities. One way to achieve discharge in solution is use of high donor or acceptor number (DN/AN) electrolytes, which might be less stable towards LiO 2 and Li 2 O 2 than their low DN/AN counterparts. To solve this dilemma, a reduction mediator was introduced into the low DN/AN electrolyte to encourage the discharge in solution. By forming an intermediate complex, it suppresses the direction reduction to Li 2 O 2 on surface and thus leads to higher capacity on discharge with higher rates. Furthermore, if Li 2 O 2 is formed in solution a charge mediator will be required, as the traditional electrode configuration is unable to oxidize the product. The implication of this is complete solution phase cycling where solid Li 2 O 2 is simply a storage material for lithium ions and electrons. REFERENCES [1]. Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J.-M. Nature Materials 2012 , 11 , 19. [2]. Lu, Y. C.; Gallant, B. M.; Kwabi, D. G.; Harding, J. R.; Mitchell, R. R.; Whittingham, M. S.; Shao-Horn, Y. Energy & Environmental Science 2013 , 6 , 750. [3]. Black, R.; Adams, B.; Nazar, L. F. Advanced Energy Materials 2012 , 2 , 801. [4]. Girishkumar, G.; McCloskey, B.; Luntz, A. C.; Swanson, S.; Wilcke, W. The Journal of Physical Chemistry Letters 2010 , 1 , 2193. [5]. Li, F.; Zhang, T.; Zhou, H. Energy & Environmental Science 2013 , 6 , 1125. [6]. Horstmann, B.; Gallant, B.; Mitchell, R.; Bessler, W. G.; Shao-Horn, Y.; Bazant, M. Z. The Journal of Physical Chemistry Letters 2013 , 4 , 4217. [7]. Hummelshoj, J. S.; Luntz, A. C.; Norskov, J. K. The Journal of Chemical Physics 2013 , 138 , 034703. [8]. McCloskey, B. D.; Scheffler, R.; Speidel, A.; Girishkumar, G.; Luntz, A. C. The Journal of Physical Chemistry C 2012 , 116 , 23897. [9]. Trahan, M. J.; Mukerjee, S.; Plichta, E. J.; Hendrickson, M. A.; Abraham, K. M. Journal of The Electrochemical Society 2013 , 160 , A259. [10]. Sharon, D.; Etacheri, V.; Garsuch, A.; Afri, M.; Frimer, A. A.; Aurbach, D. The Journal of Physical Chemistry Letters 2012 , 4 , 127. [11]. Jung, H. G.; Kim, H. S.; Park, J. B.; Oh, I. H.; Hassoun, J.; Yoon, C. S.; Scrosati, B.; Sun, Y. K. Nano Letters 2012 , 12 , 4333. [12]. Zhai, D.; Wang, H. H.; Yang, J.; Lau, K. C.; Li, K.; Amine, K.; Curtiss, L. A. Journal of the American Chemical Society 2013 , 135 , 15364.
    Type of Medium: Online Resource
    ISSN: 2151-2043
    Language: Unknown
    Publisher: The Electrochemical Society
    Publication Date: 2016
    detail.hit.zdb_id: 2438749-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...