GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-29
    Description:    The emerging interest in the biological and conservation significance of locally rare species prompts a number of questions about their correspondence with other categories of biodiversity, especially global rarity. Here we present an analysis of the correspondence between the distributions of globally and locally rare plants. Using biological hotspots of rarity as our framework, we evaluate the extent to which conservation of globally rare plants will act as a surrogate for conservation of locally rare taxa. Subsequently, we aim to identify gaps between rarity hotspots and protected land to guide conservation planning. We compiled distribution data for globally and locally rare plants from botanically diverse Napa County, California into a geographic information system. We then generated richness maps highlighting hotspots of global and local rarity. Following this, we overlaid the distribution of these hotspots with the distribution of protected lands to identify conservation gaps. Based on occupancy of 1 km 2 grid cells, we found that over half of Napa County is occupied by at least one globally or locally rare plant. Hotspots of global and local rarity occurred in a substantially smaller portion of the county. Of these hotspots, less than 5% were classified as multi-scale hotspots, i.e. they were hotspots of global and local rarity. Although, several hotspots corresponded with the 483 km 2 of protected lands in Napa County, some of the richest areas did not. Thus, our results show that there are important conservation gaps in Napa County. Furthermore, if only hotspots of global rarity are preserved, only a subset of locally rare plants will be protected. Therefore, conservation of global, local, and multi-scale hotspots needs serious consideration if the goals are to protect a larger variety of biological attributes, prevent extinction, and limit extirpation in Napa County. Content Type Journal Article Category Original Paper Pages 1-12 DOI 10.1007/s10531-011-0137-6 Authors Benjamin J. Crain, Department of Biological Sciences, Humboldt State University, 1 Harpst Street, Arcata, CA 95521, USA Jeffrey W. White, Department of Biological Sciences, Humboldt State University, 1 Harpst Street, Arcata, CA 95521, USA Steven J. Steinberg, Department of Environmental Science and Management, Humboldt State University, 1 Harpst Street, Arcata, CA 95521, USA Journal Biodiversity and Conservation Online ISSN 1572-9710 Print ISSN 0960-3115
    Print ISSN: 0960-3115
    Electronic ISSN: 1572-9710
    Topics: Biology
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-04-17
    Description:    Severe water erosion is notorious for its harmful effects on land-water resources as well as local societies. The scale effects of water erosion, however, greatly exacerbate the difficulties of accurate erosion evaluation and hazard control in the real world. Analyzing the related scale issues is thus urgent for a better understanding of erosion variations as well as reducing such erosion. In this review article, water erosion dynamics across three spatial scales including plot, watershed, and regional scales were selected and discussed. For the study purposes and objectives, the advantages and disadvantages of these scales all demonstrate clear spatial-scale dependence. Plot scale studies are primarily focused on abundant data collection and mechanism discrimination of erosion generation, while watershed scale studies provide valuable information for watershed management and hazard control as well as the development of quantitatively distributed models. Regional studies concentrate more on large-scale erosion assessment, and serve policymakers and stakeholders in achieving the basis for regulatory policy for comprehensive land uses. The results of this study show that the driving forces and mechanisms of water erosion variations among the scales are quite different. As a result, several major aspects contributing to variations in water erosion across the scales are stressed: differences in the methodologies across various scales, different sink-source roles on water erosion processes, and diverse climatic zones and morphological regions. This variability becomes more complex in the context of accelerated global change. The changing climatic factors and earth surface features are considered the fourth key reason responsible for the increased variability of water erosion across spatial scales. Content Type Journal Article Pages 127-143 DOI 10.1007/s11769-012-0524-2 Authors Wei Wei, State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China Liding Chen, State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China Lei Yang, State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China Bojie Fu, State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China Ranhao Sun, State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China Journal Chinese Geographical Science Online ISSN 1993-064X Print ISSN 1002-0063 Journal Volume Volume 22 Journal Issue Volume 22, Number 2
    Print ISSN: 1002-0063
    Electronic ISSN: 1993-064X
    Topics: Geography
    Published by Springer on behalf of Science Press.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-11-12
    Description:    In this paper, we proposed a framework for evaluating the performance of ecosystem strategies prepared for enhancing vulnerability reduction in the face of hazards due to climate change. The framework highlights the positive effects of human activities in the coupled human and natural system (CHANS) by introducing adaptive capacity as an evaluation criterion. A built-in regional vulnerability to a certain hazard was generated based upon interaction of three dimensions of vulnerability: exposure, sensitivity and adaptive capacity. We illustrated the application of this framework in the temperate farming-grazing transitional zone in the middle Inner Mongolia of the northern China, where drought hazard is the key threat to the CHANS. Specific indices were produced to translate such climate variance and social-economic differences into specific indicators. The results showed that the most exposed regions are the inner land areas, while counties located in the eastern part are potentially the most adaptive ones. Ordos City and Bayannur City are most frequently influenced by multiple climate variances, showing highest sensitivity. Analysis also indicated that differences in the ability to adapt to changes are the main causes of spatial differences. After depiction of the spatial differentiations and analysis of the reasons, climate zones were divided to depict the differences in facing to the drought threats. The climate zones were shown to be similar to vulnerability zones based on the quantitative structure of indexes drafted by a triangular map. Further analysis of the composition of the vulnerability index showed that the evaluation criteria were effective in validating the spatial differentiation but potentially ineffective because of their limited time scope. This research will be a demonstration of how to combine the three dimensions by quantitative methods and will thus provide a guide for government to vulnerability reduction management. Content Type Journal Article Pages 1-13 DOI 10.1007/s11769-012-0583-4 Authors Xiaoqian Liu, Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871 China Yanglin Wang, Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871 China Jian Peng, Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871 China K. Braimoh Ademola, Global Land Project, Sapporo Nodal Office, Hokkaido University, Sapporo, 060-0809 Japan He Yin, Geomatics Laboratory, Geography Department, Humboldt-Universität zu Berlin, Berlin, 10099 Germany Journal Chinese Geographical Science Online ISSN 1993-064X Print ISSN 1002-0063
    Print ISSN: 1002-0063
    Electronic ISSN: 1993-064X
    Topics: Geography
    Published by Springer on behalf of Science Press.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-02-02
    Description:    Land use change and human population growth are accelerating the fragmentation and insularization of wildlife habitats worldwide. The conservation and management of wildlife in the resultant ‘island’ ecosystems in the context of global warming is challenging due to the isolation and reduced size of the ecosystems and hence the scale over which ecosystem processes can operate. We analyzed trends in numbers of nine large herbivores in Kenya’s Lake Nakuru National Park to understand how rainfall and temperature variability, surrounding land use changes, and boundary fencing affected wildlife population dynamics inside the park during 1970–2011. Buffalo, zebra and Thomson’s gazelle numbers increased persistently. Grant’s gazelle and impala increased initially then gradually declined. Waterbuck and warthog numbers progressively declined to levels that potentially threatened their local population persistence. The total biomass of ungulates tripled from 1970 to 2011, with buffalo replacing waterbuck as the predominant species in biomass. Increased competition from buffalo and zebra, heightened predation and illicit human harvests probably all contributed to the declines by waterbuck and warthog. Density-dependent limitation of population growth within the park confines was evident for buffalo, impala, eland, giraffe, Grant’s and Thomson’s gazelles. Fluctuations in the lake level related to varying rainfall affected changes in animal abundance through expansion of the lake area and flooding of grasslands bordering the lake. Unusually, the most stressful conditions were associated with high water levels following high rainfall. There was also evidence of carry-over effects from prior habitat conditions affecting all species. The relatively stable populations of all species except warthog and waterbuck demonstrate the remarkable capacity of this small, insularized park to retain viable populations of most of the large herbivores, without much management intervention. Content Type Journal Article Category Original Paper Pages 1-21 DOI 10.1007/s10531-012-0239-9 Authors Joseph O. Ogutu, International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100 Kenya Norman Owen-Smith, Centre for African Ecology, School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Wits, 2050 South Africa Hans-Peter Piepho, Bioinformatics Unit, Institute for Crop Science, University of Hohenheim, Fruwirthstrasse 23, 70599 Stuttgart, Germany Bernard Kuloba, Kenya Wildlife Service, Lake Nakuru National Park, P.O. Box 539, Nakuru, Kenya Joseph Edebe, Kenya Wildlife Service, Lake Nakuru National Park, P.O. Box 539, Nakuru, Kenya Journal Biodiversity and Conservation Online ISSN 1572-9710 Print ISSN 0960-3115
    Print ISSN: 0960-3115
    Electronic ISSN: 1572-9710
    Topics: Biology
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...