GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-11-28
    Description:    Climate change is an issue of great importance for human rights, public health, and socioeconomic equity because of its diverse consequences overall as well as its disproportionate impact on vulnerable and socially marginalized populations. Vulnerability to climate change is determined by a community’s ability to anticipate, cope with, resist, and recover from the impact of major weather events. Climate change will affect industrial and agricultural sectors, as well as transportation, health, and energy infrastructure. These shifts will have significant health and economic consequences for diverse communities throughout California. Without proactive policies to address these equity concerns, climate change will likely reinforce and amplify current as well as future socioeconomic disparities, leaving low-income, minority, and politically marginalized groups with fewer economic opportunities and more environmental and health burdens. This review explores the disproportionate impacts of climate change on vulnerable groups in California and investigates the costs and benefits of the climate change mitigation strategies specified for implementation in the California Global Warming Solutions Act of 2006 (AB 32). Lastly, knowledge gaps, future research priorities, and policy implications are identified. Content Type Journal Article Pages 1-19 DOI 10.1007/s10584-011-0310-7 Authors Seth B. Shonkoff, Department of Environmental Science, Policy, and Management, Division of Society and Environment, University of California, Berkeley, 137 Mulford Hall, MC 3144, Berkeley, CA 94720, USA Rachel Morello-Frosch, Department of Environmental Science, Policy and Management & School of Public Health, University of California, Berkeley, 137 Mulford Hall, MC 3114, Berkeley, CA 94720, USA Manuel Pastor, Departments of Geography and American Studies and Ethnicity, University of Southern California, 3620 S. Vermont Ave, KAP-462, Los Angeles, CA 90089-0255, USA James Sadd, Department of Environmental Science and Geology, Occidental College, 1600 Campus Rd., Los Angeles, CA 90041, USA Journal Climatic Change Online ISSN 1573-1480 Print ISSN 0165-0009
    Print ISSN: 0165-0009
    Electronic ISSN: 1573-1480
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-05-18
    Description:    The tree species composition of a forested landscape may respond to climate change through two primary successional mechanisms: (1) colonization of suitable habitats and (2) competitive dynamics of established species. In this study, we assessed the relative importance of competition and colonization in forest landscape response (as measured by the forest type composition change) to global climatic change. Specifically, we simulated shifts in forest composition within the Boundary Waters Canoe Area of northern Minnesota during the period 2000–2400  AD . We coupled a forest ecosystem process model, PnET-II, and a spatially dynamic forest landscape model, LANDIS-II, to simulate landscape change. The relative ability of 13 tree species to colonize suitable habitat was represented by the probability of establishment or recruitment. The relative competitive ability was represented by the aboveground net primary production. Both competitive and colonization abilities changed over time in response to climatic change. Our results showed that, given only moderate-frequent windthrow (rotation period = 500 years) and fire disturbances (rotation period = 300 years), competition is relatively more important for the short-term (〈100 years) compositional response to climatic change. For longer-term forest landscape response (〉100 years), colonization became relatively more important. However, if more frequent fire disturbances were simulated, then colonization is the dominant process from the beginning of the simulations. Our results suggest that the disturbance regime will affect the relative strengths of successional drivers, the understanding of which is critical for future prediction of forest landscape response to global climatic change. Content Type Journal Article Pages 1-31 DOI 10.1007/s10584-011-0098-5 Authors Chonggang Xu, Division of Earth and Environmental Sciences, Los Alamos National Laboratory, Los Alamos, NM 87544, USA George Z. Gertner, Department of Natural Resources & Environmental Sciences, University of Illinois, W-523 Turner Hall, MC-047, 1102 South Goodwin Ave, Urbana, IL 61801, USA Robert M. Scheller, Environmental Science and Management, Portland State University, P.O. Box 751, Portland, OR 97207, USA Journal Climatic Change Online ISSN 1573-1480 Print ISSN 0165-0009
    Print ISSN: 0165-0009
    Electronic ISSN: 1573-1480
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-11-04
    Description:    This paper explores two issues that have been receiving increasing attention in recent decades, climate change adaptation and natural disaster risk reduction. An examination of the similarities and differences between them reveals important linkages but also significant differences, including the spectrum of threats, time and spatial scales, the importance of local versus global processes, how risks are perceived, and degree of uncertainty. Using a risk perspective to analyze these issues, preferential strategies emerge related to choices of being proactive, reactive, or emphasizing risk management as opposed to the precautionary principle. The policy implications of this analysis are then explored, using Canada as a case study. Content Type Journal Article Pages 1-15 DOI 10.1007/s10584-011-0259-6 Authors David Etkin, Disaster and Emergency Management, Faculty of Liberal Arts and Professional Studies, York University, 4700 Keele St, Toronto, Ontario, Canada M3J 1P3 J. Medalye, Political Science, Faculty of Liberal Arts & Professional Studies, York University, Toronto, Ontario, Canada K. Higuchi, Faculty of Environmental Studies, York University, Toronto, Ontario, Canada Journal Climatic Change Online ISSN 1573-1480 Print ISSN 0165-0009
    Print ISSN: 0165-0009
    Electronic ISSN: 1573-1480
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2011-10-04
    Description:    Although policymaking in response to the climate change threat is essentially a challenge of risk management, most studies of the relation of emissions targets to desired climate outcomes are either deterministic or subject to a limited representation of the underlying uncertainties. Monte Carlo simulation, applied to the MIT Integrated Global System Model (an integrated economic and earth system model of intermediate complexity), is used to analyze the uncertain outcomes that flow from a set of century-scale emissions paths developed originally for a study by the U.S. Climate Change Science Program. The resulting uncertainty in temperature change and other impacts under these targets is used to illustrate three insights not obtainable from deterministic analyses: that the reduction of extreme temperature changes under emissions constraints is greater than the reduction in the median reduction; that the incremental gain from tighter constraints is not linear and depends on the target to be avoided; and that comparing median results across models can greatly understate the uncertainty in any single model. Content Type Journal Article Pages 1-15 DOI 10.1007/s10584-011-0260-0 Authors Mort Webster, Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge, MA, USA Andrei P. Sokolov, Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge, MA, USA John M. Reilly, Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge, MA, USA Chris E. Forest, Department of Meteorology, Pennsylvania State University, University Park, PA, USA Sergey Paltsev, Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge, MA, USA Adam Schlosser, Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge, MA, USA Chien Wang, Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge, MA, USA David Kicklighter, The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, USA Marcus Sarofim, AAAS Science and Technology Policy Fellow, U.S. Environmental Protection Agency, Washington DC, USA Jerry Melillo, The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, USA Ronald G. Prinn, Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge, MA, USA Henry D. Jacoby, Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge, MA, USA Journal Climatic Change Online ISSN 1573-1480 Print ISSN 0165-0009
    Print ISSN: 0165-0009
    Electronic ISSN: 1573-1480
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-17
    Description:    Representative Concentration Pathway 6.0 (RCP6) is a pathway that describes trends in long-term, global emissions of greenhouse gases (GHGs), short-lived species, and land-use/land-cover change leading to a stabilisation of radiative forcing at 6.0 Watts per square meter (Wm −2 ) in the year 2100 without exceeding that value in prior years. Simulated with the Asia-Pacific Integrated Model (AIM), GHG emissions of RCP6 peak around 2060 and then decline through the rest of the century. The energy intensity improvement rates changes from 0.9% per year to 1.5% per year around 2060. Emissions are assumed to be reduced cost-effectively in any period through a global market for emissions permits. The exchange of CO 2 between the atmosphere and terrestrial ecosystem through photosynthesis and respiration are estimated with the ecosystem model. The regional emissions, except CO 2 and N 2 O, are downscaled to facilitate transfer to climate models. Content Type Journal Article Pages 1-18 DOI 10.1007/s10584-011-0150-5 Authors Toshihiko Masui, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan Kenichi Matsumoto, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan Yasuaki Hijioka, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan Tsuguki Kinoshita, Ibaraki University, 3-21-1 Chuo, Ami, Ibaraki 300-0393, Japan Toru Nozawa, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan Sawako Ishiwatari, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan Etsushi Kato, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showa-machi, Kanazawa, Yokohama, Kanagawa 236-0001, Japan P. R. Shukla, Indian Institute of Management, Ahmedabad, Vastrapur, Ahmedabad, 380015 India Yoshiki Yamagata, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan Mikiko Kainuma, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan Journal Climatic Change Online ISSN 1573-1480 Print ISSN 0165-0009
    Print ISSN: 0165-0009
    Electronic ISSN: 1573-1480
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2011-03-13
    Description:    This paper investigates changes in shoreline evolution caused by changes in wave climate. In particular, a number of nearshore wave climate scenarios corresponding to a ‘present’ (1961–1990) and a future time-slice (2071–2100) are used to drive a beach evolution model to determine monthly and seasonal statistics. To limit the number of variables, an idealised shoreline segment is adopted. The nearshore wave climate scenarios are generated from wind climate scenarios through point wave hindcast and inshore transformation. The original wind forcing comes from regional climate change model experiments of different resolutions and/or driving global climate models, representing different greenhouse-gas emission scenarios. It corresponds to a location offshore the south central coast of England. Hypothesis tests are applied to map the degree of evidence of future change in wave and shoreline statistics relative to the present. Differential statistics resulting from different global climate models and future emission scenarios are also investigated. Further, simple, fast, and straightforward methods that are capable of accommodating a great number of climate change scenarios with limited data reduction requirements are proposed to tackle the problem under consideration. The results of this study show that there are statistically significant changes in nearshore wave climate conditions and beach alignment between current and future climate scenarios. Changes are most notable during late summer for the medium-high future emission scenario and late winter for the medium-low. Despite frequent disagreement between global climate change models on the statistical significance of a change, all experiments agreed in future seasonal trends. Finally, a point of importance for coastal management, material shoreline changes are generally linked to significant changes in future wave direction rather than wave height. Content Type Journal Article Pages 1-33 DOI 10.1007/s10584-010-0011-7 Authors Anna Zacharioudaki, CIMA - Centre for Marine and Environmental Research, University of the Algarve, Hidrotec-ISE, Campus da Penha, Faro, 8005-139 Portugal Dominic E. Reeve, School of Marine Science and Engineering, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, UK Journal Climatic Change Online ISSN 1573-1480 Print ISSN 0165-0009
    Print ISSN: 0165-0009
    Electronic ISSN: 1573-1480
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...