GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • Journal of Pest Science  (1)
  • Journal of Limnology  (1)
  • 40686
  • 9242
  • Biology  (2)
  • 1
    Publication Date: 2012-06-12
    Description:    This review focuses on biological profiles of contemporary acaricides, acaricide resistance, and other up-to-date issues related to acaricide use in management of plant-feeding mites. Over the last two decades a considerable number of synthetic acaricides emerged on the global market, most of which exert their effects acting on respiration targets. Among them, the most important are inhibitors of mitochondrial electron transport at complex I (METI-acaricides). Discovery of tetronic acid derivatives (spirodiclofen and spiromesifen) introduced a completely new mode of action: lipid synthesis inhibition. Acaricide resistance in spider mites has become a global phenomenon. The resistance is predominantly caused by a less sensitive target site (target site resistance) and enhanced detoxification (metabolic resistance). The major emphasis in current research on acaricide resistance mechanisms deals with elucidation of their molecular basis. Point mutations resulting in structural changes of target site and leading to its reduced sensitivity, have recently been associated with resistance in Tetranychus urticae Koch and other spider mites. The only sustainable, long-term perspective for acaricide use is their implementation in multitactic integrated pest management programs, in which acaricides are applied highly rationally and in interaction with other control tactics. Considering that the key recommendation for effective acaricide resistance management is reduction of the selection for resistance by alternations, sequences, rotations, and mixtures of compounds with different modes of action, the main challenge that acaricide use is facing is the need for new active substances with novel target sites. Besides implementation of advanced technologies for screening and design of new synthetic compounds, wider use of microbial and plant products with acaricidal activity could also contribute increased biochemical diversity of acaricides. Content Type Journal Article Category Original Paper Pages 1-14 DOI 10.1007/s10340-012-0442-1 Authors Dejan Marcic, Department of Applied Entomology and Zoology, Institute of Pesticides and Environmental Protection, Banatska 31B, P.O. Box 163, 11080 Belgrade-Zemun, Serbia Journal Journal of Pest Science Online ISSN 1612-4766 Print ISSN 1612-4758
    Print ISSN: 1612-4758
    Electronic ISSN: 1612-4766
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-05-10
    Description: The biodiversity of aquatic inland habitats currently faces unprecedented threats from human activities. At the same time, although much is known about the functioning of freshwater ecosystems the successful transfer of such knowledge to practical conservation has not been universal. Global awareness of aquatic conservation issues is also hampered by the fact that conditions under the water surface are largely hidden from the direct experience of most members of society. Connectivity, or lack of it, is another challenge to the conservation of freshwater habitats, while urban areas can play a perhaps unexpectedly important positive role. Freshwater habitats frequently enjoy benefits accruing from a sense of ownership or stewardship by local inhabitants, which has led to the development of conservation movements which commonly started life centred on the aquatic inland habitat itself but of which many have now matured into wider catchment-based conservation programmes. A demonstrable need for evidence-based conservation management in turn requires scientific assessments to be increasingly robust and standardised, while at the same time remaining open to the adoption of technological advances and welcoming the rapidly developing citizen science movement. There is evidence of real progress in this context and conservation scientists are now communicating their findings to environmental managers in a way and on a scale that was rarely seen a couple of decades ago. It is only in this way that scientific knowledge can be efficiently transferred to conservation planning, prioritisation and ultimately management in an increasingly scaled-up, joined-up and resource-limited world. The principle of ‘prevention is better than cure’ is particularly appropriate to most biological conservation issues in aquatic inland habitats and is inextricably linked to educating and/or nudging appropriate human behaviours. When prevention fails, some form of emergency rescue such as captive breeding or translocations may be justified for particularly important animal or plant populations. However, long-haul missions of habitat rehabilitation or restoration are generally to be preferred even if they usually take many years if not decades to reach fruition. Conservation researchers, managers and practitioners must be realistic in their objectives and timescales for such programmes and take positive steps to communicate such information to stakeholders. Now more than ever, people are interested in conservation and sustainability. There are substantial challenges ahead, but these are better days for the biological conservation of aquatic inland habitats.
    Print ISSN: 1129-5767
    Electronic ISSN: 1723-8633
    Topics: Biology
    Published by PAGEPress
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...