GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-02-04
    Description: Purpose   The main goal of this paper was to analyse the environmental profile of a structural component of a wooden house: a ventilated wooden wall, by combining two environmental methodologies: one quantitative, the life cycle assessment (LCA) and another qualitative, the design for the environment (DfE). Methods   The LCA study covers the whole life cycle of the ventilated wall manufacture as well as its distribution, installation and maintenance. To carry out this analysis, a Galician wood company was assessed in detail, dividing the process into four stages: the assembling stage, the packing stage, the distribution to clients as well as the final installation and maintenance of the wooden wall. Ten impact categories have been assessed in detail in the LCA study: abiotic depletion (AD), acidification (AC), eutrophication (EP), global warming (GW), ozone layer depletion (OD), human toxicity (HT), fresh water aquatic ecotoxicity (FE), marine aquatic ecotoxicity (ME), terrestrial ecotoxicity (TE) and photochemical oxidant formation (PO). Results and discussion   According to the environmental results, the assembling stage was the most important contributor to the environmental profile with contributions from 57% to 87%, followed by the production of the electricity required. The detailed analysis of the assembling stage identified the most important environmental hot spots: the production of boards used in the structure [oriented strand board and medium density fibreboard (MDF)] as well as the transportation of the cedar sheets from Brazil. Concerning the results of the DfE, a selection of different eco-design strategies was proposed from technological, economic and social points of view by an interdisciplinary team of researchers and company´s workers. The eco-design strategy considered the following improvement actions: (i) the substitution of the MDF in the wall structure; (ii) the use of German red pine sheets; (iii) the installation of solar panels in the facilities; (iv) the use of Euro 5 transport vehicles, (v) the use of biodiesel for transport; (vi) the definition of a maintenance protocol for the wooden materials; and (vii) the definition of a protocol for the separation of materials before disposal. Conclusions   The results obtained in this work allow predicting the influence of the selection and origin of the raw materials used on the environmental burdens associated with the process. Future work will focus on the manufacturing of a prototype of an eco-designed ventilated wooden wall. Content Type Journal Article Category WOOD AND OTHER RENEWABLE RESOURCES Pages 1-12 DOI 10.1007/s11367-012-0384-0 Authors Sara González-García, Department of Life Sciences, Division of Biology, Imperial College of London, South Kensington Campus, Sir Alexander Fleming Buildings, London, SW7 2AZ UK Raúl García Lozano, SosteniPrA (UAB-IRTA-Inèdit), Institute of Environmental Science and Technology (ICTA), School of Engineering, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Catalonia, Spain Javier Costas Estévez, Quality Management Department, Las cinco Jotas, Avda. Camelias No 1, 6203 Vigo, Spain Rosario Castilla Pascual, Innovation and Technology Area, CIS MADEIRA, Galician Park of Technology, Avenida de Galicia 5, San Cibrao das Viñas, 32901 Ourense, Spain Ma. Teresa Moreira, Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain Xavier Gabarrell, SosteniPrA (UAB-IRTA-Inèdit), Institute of Environmental Science and Technology (ICTA), School of Engineering, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Catalonia, Spain Joan Rieradevall i Pons, SosteniPrA (UAB-IRTA-Inèdit), Institute of Environmental Science and Technology (ICTA), School of Engineering, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Catalonia, Spain Gumersindo Feijoo, Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain Journal The International Journal of Life Cycle Assessment Online ISSN 1614-7502 Print ISSN 0948-3349
    Print ISSN: 0948-3349
    Electronic ISSN: 1614-7502
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Economics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-04-30
    Description: Purpose   Land use is a main driver of global biodiversity loss and its environmental relevance is widely recognized in research on life cycle assessment (LCA). The inherent spatial heterogeneity of biodiversity and its non-uniform response to land use requires a regionalized assessment, whereas many LCA applications with globally distributed value chains require a global scale. This paper presents a first approach to quantify land use impacts on biodiversity across different world regions and highlights uncertainties and research needs. Methods   The study is based on the United Nations Environment Programme (UNEP)/Society of Environmental Toxicology and Chemistry (SETAC) land use assessment framework and focuses on occupation impacts, quantified as a biodiversity damage potential (BDP). Species richness of different land use types was compared to a (semi-)natural regional reference situation to calculate relative changes in species richness. Data on multiple species groups were derived from a global quantitative literature review and national biodiversity monitoring data from Switzerland. Differences across land use types, biogeographic regions (i.e., biomes), species groups and data source were statistically analyzed. For a data subset from the biome (sub-)tropical moist broadleaf forest, different species-based biodiversity indicators were calculated and the results compared. Results and discussion   An overall negative land use impact was found for all analyzed land use types, but results varied considerably. Different land use impacts across biogeographic regions and taxonomic groups explained some of the variability. The choice of indicator also strongly influenced the results. Relative species richness was less sensitive to land use than indicators that considered similarity of species of the reference and the land use situation. Possible sources of uncertainty, such as choice of indicators and taxonomic groups, land use classification and regionalization are critically discussed and further improvements are suggested. Data on land use impacts were very unevenly distributed across the globe and considerable knowledge gaps on cause–effect chains remain. Conclusions   The presented approach allows for a first rough quantification of land use impact on biodiversity in LCA on a global scale. As biodiversity is inherently heterogeneous and data availability is limited, uncertainty of the results is considerable. The presented characterization factors for BDP can approximate land use impacts on biodiversity in LCA studies that are not intended to directly support decision-making on land management practices. For such studies, more detailed and site-dependent assessments are required. To assess overall land use impacts, transformation impacts should additionally be quantified. Therefore, more accurate and regionalized data on regeneration times of ecosystems are needed. Content Type Journal Article Category GLOBAL LAND USE IMPACTS ON BIODIVERSITY AND ECOSYSTEM SERVICES IN LCA Pages 1-15 DOI 10.1007/s11367-012-0412-0 Authors Laura de Baan, Institute for Environmental Decisions, Natural and Social Science Interface, ETH Zurich, Universitaetsstr. 22, 8092 Zurich, Switzerland Rob Alkemade, PBL Netherlands Environmental Assessment Agency, P. O. Box 303, 3720 AH Bilthoven, The Netherlands Thomas Koellner, Professorship of Ecological Services, Faculty of Biology, Chemistry and Geosciences, University of Bayreuth, GEO II, Room 1.17, Universitaetsstr. 30, 95440 Bayreuth, Germany Journal The International Journal of Life Cycle Assessment Online ISSN 1614-7502 Print ISSN 0948-3349
    Print ISSN: 0948-3349
    Electronic ISSN: 1614-7502
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Economics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-10-27
    Description:    Gross primary productivity (GPP) is a major component of carbon exchange between the atmosphere and terrestrial ecosystems and a key component of the terrestrial carbon cycle. Because of the large spatial heterogeneity and temporal dynamics of ecosystems, it is a challenge to estimate GPP accurately at global or regional scales. The 8-day MODerate resolution Imaging Spectroradiometer (MODIS) GPP product provides a near real time estimate of global GPP. However, previous studies indicated that MODIS GPP has large uncertainties, partly caused by biases in parameterization and forcing data. In this study, MODIS GPP was validated using GPP derived from the eddy covariance flux measurements at five typical forest sites in East Asia. The validation indicated that MODIS GPP was seriously underestimated in these forest ecosystems of East Asia, especially at northern sites. With observed meteorological data, fraction of photosynthetically active radiation absorbed by the plant canopy (fPAR) calculated using smoothed MODIS leaf area index, and optimized maximum light use efficiency ( ε max ) to force the MOD17 algorithm, the agreement between predicted GPP and tower-based GPP was significantly improved. The errors of MODIS GPP in these forest ecosystems of East Asia were mainly caused by uncertainties in ε max , followed by those in fPAR and meteorological data. The separation of canopy into sunlit and shaded leaves, for which GPP is individually calculated, can improve GPP simulation significantly. Content Type Journal Article Category Special Feature: Original Article Pages 1-10 DOI 10.1007/s10310-012-0369-7 Authors Mingzhu He, Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Science, Nanjing University, 901 Mengminwei Building, 22 Hankou Road, Nanjing, 210093 China Yanlian Zhou, School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210093 China Weimin Ju, Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Science, Nanjing University, 901 Mengminwei Building, 22 Hankou Road, Nanjing, 210093 China Jingming Chen, Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Science, Nanjing University, 901 Mengminwei Building, 22 Hankou Road, Nanjing, 210093 China Li Zhang, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101 China Shaoqiang Wang, Qianyanzhou Ecological Experimental Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101 China Nobuko Saigusa, Center for Global Environmental Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506 Japan Ryuichi Hirata, Center for Global Environmental Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506 Japan Shohei Murayama, Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba West, 16-1 Onogawa, Tsukuba, 305-8569 Japan Yibo Liu, Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Science, Nanjing University, 901 Mengminwei Building, 22 Hankou Road, Nanjing, 210093 China Journal Journal of Forest Research Online ISSN 1610-7403 Print ISSN 1341-6979
    Print ISSN: 1341-6979
    Electronic ISSN: 1610-7403
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-03-10
    Description: Purpose   Sustainable manufacturing is practiced globally as a comprehensive strategy for improving the sustainability performance of the manufacturing industry. While sustainability is characterized into such three dimensions as economic, environmental, and social, currently, there is no quantitative method yet to measure the so-called “sustainability” in the manufacturing industry. The objective of this research is to develop a comprehensive and effective quantitative method to measure the overall sustainability performance of manufacturing companies. Methods   In this paper, an integrated methodology is presented for the development of composite sustainability indicators based on principal component analysis (PCA). In developing this integrated approach, both industry and academia surveys are conducted to identify what sustainability indicators are favored by the sustainable manufacturing community. A unique index is then generated to measure the overall sustainability performance of industrial practices. The methodology can be used for benchmarking the overall sustainability performance of various manufacturing companies. Results   A case study is conducted on a total of 11 global electronic manufacturing companies. The overall sustainability performance of these companies are measured, benchmarked, and ranked. The results showed that PCA is an effective approach for constructing composite sustainability indicators across environmental, economic, and social dimensions. Conclusions   From this research, it is found that industry and academia have different views on the sustainability measurement, evidenced by different weights put on the same indicator in industry and academia. The case study demonstrated that the methodology presented in this paper is an effective tool for comprehensive measurement of sustainability performance of manufacturing companies. Strengths and weaknesses of each company can be identified. Then, the recommended improvements can be suggested based on the study of each of the individual indicators. Content Type Journal Article Category SUSTAINABLE DEVELOPMENT Pages 1-11 DOI 10.1007/s11367-012-0394-y Authors Tao Li, School of Mechanical Engineering, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116023, People’s Republic of China Hongchao Zhang, School of Mechanical Engineering, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116023, People’s Republic of China Chris Yuan, Department of Mechanical Engineering, University of Wisconsin, Milwaukee, WI, USA Zhichao Liu, School of Mechanical Engineering, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116023, People’s Republic of China Chengcheng Fan, Department of Management Science and Engineering, Stanford University, Stanford, CA, USA Journal The International Journal of Life Cycle Assessment Online ISSN 1614-7502 Print ISSN 0948-3349
    Print ISSN: 0948-3349
    Electronic ISSN: 1614-7502
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Economics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-11-09
    Description:    A method for obtaining a relative deer population density index with low cost and effort is urgently needed in wildlife protection areas that need their own deer management guidelines. We recorded the number of deer sighted during our daily trips on forest roads by car in Ashiu Forest at Kyoto University, Japan, beginning in 2006. We used generalized additive mixed models (GAMMs) to estimate among-year trends in the number of deer sighted. We applied models for the total number of deer (TND), number of adults (NA), and number of fawns (NF) sighted, which included both current-year and 1-year-old fawns. Full models included the terms of year (2007, 2008, 2009, and 2010), weather (fine, cloudy, and rain/snow), and nonlinear effects of season (date) and time (time). The optimal GAMMs for TND, NA, and NF did not include the effect of weather but included those of time, date, and year. The detected among-year trends in deer population may be influenced by differences in snow environments among the years. The modeling of road count data using GAMM quantitatively determined among-year variation in the number of deer sighted. This trend was similar to that of the population density estimated using a block count survey conducted in Ashiu Forest. Content Type Journal Article Category Original Article Pages 1-7 DOI 10.1007/s10310-012-0379-5 Authors Inoue Mizuki, Laboratory of Forest Science, Faculty of Bioresource Sciences, Akita Prefectural University, Akita, 010-0195 Japan Shota Sakaguchi, Laboratory of Forest Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan Keitaro Fukushima, Field Science Education and Research Center, Kyoto University, Kyoto, Japan Masaru Sakai, Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan Atsushi Takayanagi, Laboratory of Forest Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan Daisuke Fujiki, Institute of Natural and Environment Science, University of Hyogo, Tanba, Japan Michimasa Yamasaki, Laboratory of Forest Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan Journal Journal of Forest Research Online ISSN 1610-7403 Print ISSN 1341-6979
    Print ISSN: 1341-6979
    Electronic ISSN: 1610-7403
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...