GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • Articles  (17)
  • Climatic Change  (6)
  • Mitigation and Adaptation Strategies for Global Change  (4)
  • Chinese Science Bulletin  (3)
  • Ecosystems  (2)
  • Agroforestry Systems  (2)
  • 2034
  • 2090
  • 2251
  • 41064
  • 6697
  • 1
    Publication Date: 2011-11-28
    Description:    Climate change is an issue of great importance for human rights, public health, and socioeconomic equity because of its diverse consequences overall as well as its disproportionate impact on vulnerable and socially marginalized populations. Vulnerability to climate change is determined by a community’s ability to anticipate, cope with, resist, and recover from the impact of major weather events. Climate change will affect industrial and agricultural sectors, as well as transportation, health, and energy infrastructure. These shifts will have significant health and economic consequences for diverse communities throughout California. Without proactive policies to address these equity concerns, climate change will likely reinforce and amplify current as well as future socioeconomic disparities, leaving low-income, minority, and politically marginalized groups with fewer economic opportunities and more environmental and health burdens. This review explores the disproportionate impacts of climate change on vulnerable groups in California and investigates the costs and benefits of the climate change mitigation strategies specified for implementation in the California Global Warming Solutions Act of 2006 (AB 32). Lastly, knowledge gaps, future research priorities, and policy implications are identified. Content Type Journal Article Pages 1-19 DOI 10.1007/s10584-011-0310-7 Authors Seth B. Shonkoff, Department of Environmental Science, Policy, and Management, Division of Society and Environment, University of California, Berkeley, 137 Mulford Hall, MC 3144, Berkeley, CA 94720, USA Rachel Morello-Frosch, Department of Environmental Science, Policy and Management & School of Public Health, University of California, Berkeley, 137 Mulford Hall, MC 3114, Berkeley, CA 94720, USA Manuel Pastor, Departments of Geography and American Studies and Ethnicity, University of Southern California, 3620 S. Vermont Ave, KAP-462, Los Angeles, CA 90089-0255, USA James Sadd, Department of Environmental Science and Geology, Occidental College, 1600 Campus Rd., Los Angeles, CA 90041, USA Journal Climatic Change Online ISSN 1573-1480 Print ISSN 0165-0009
    Print ISSN: 0165-0009
    Electronic ISSN: 1573-1480
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-05-18
    Description:    The tree species composition of a forested landscape may respond to climate change through two primary successional mechanisms: (1) colonization of suitable habitats and (2) competitive dynamics of established species. In this study, we assessed the relative importance of competition and colonization in forest landscape response (as measured by the forest type composition change) to global climatic change. Specifically, we simulated shifts in forest composition within the Boundary Waters Canoe Area of northern Minnesota during the period 2000–2400  AD . We coupled a forest ecosystem process model, PnET-II, and a spatially dynamic forest landscape model, LANDIS-II, to simulate landscape change. The relative ability of 13 tree species to colonize suitable habitat was represented by the probability of establishment or recruitment. The relative competitive ability was represented by the aboveground net primary production. Both competitive and colonization abilities changed over time in response to climatic change. Our results showed that, given only moderate-frequent windthrow (rotation period = 500 years) and fire disturbances (rotation period = 300 years), competition is relatively more important for the short-term (〈100 years) compositional response to climatic change. For longer-term forest landscape response (〉100 years), colonization became relatively more important. However, if more frequent fire disturbances were simulated, then colonization is the dominant process from the beginning of the simulations. Our results suggest that the disturbance regime will affect the relative strengths of successional drivers, the understanding of which is critical for future prediction of forest landscape response to global climatic change. Content Type Journal Article Pages 1-31 DOI 10.1007/s10584-011-0098-5 Authors Chonggang Xu, Division of Earth and Environmental Sciences, Los Alamos National Laboratory, Los Alamos, NM 87544, USA George Z. Gertner, Department of Natural Resources & Environmental Sciences, University of Illinois, W-523 Turner Hall, MC-047, 1102 South Goodwin Ave, Urbana, IL 61801, USA Robert M. Scheller, Environmental Science and Management, Portland State University, P.O. Box 751, Portland, OR 97207, USA Journal Climatic Change Online ISSN 1573-1480 Print ISSN 0165-0009
    Print ISSN: 0165-0009
    Electronic ISSN: 1573-1480
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-11-04
    Description:    This paper explores two issues that have been receiving increasing attention in recent decades, climate change adaptation and natural disaster risk reduction. An examination of the similarities and differences between them reveals important linkages but also significant differences, including the spectrum of threats, time and spatial scales, the importance of local versus global processes, how risks are perceived, and degree of uncertainty. Using a risk perspective to analyze these issues, preferential strategies emerge related to choices of being proactive, reactive, or emphasizing risk management as opposed to the precautionary principle. The policy implications of this analysis are then explored, using Canada as a case study. Content Type Journal Article Pages 1-15 DOI 10.1007/s10584-011-0259-6 Authors David Etkin, Disaster and Emergency Management, Faculty of Liberal Arts and Professional Studies, York University, 4700 Keele St, Toronto, Ontario, Canada M3J 1P3 J. Medalye, Political Science, Faculty of Liberal Arts & Professional Studies, York University, Toronto, Ontario, Canada K. Higuchi, Faculty of Environmental Studies, York University, Toronto, Ontario, Canada Journal Climatic Change Online ISSN 1573-1480 Print ISSN 0165-0009
    Print ISSN: 0165-0009
    Electronic ISSN: 1573-1480
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-01-02
    Description:    Within climate change impact research, the consideration of socioeconomic processes remains a challenge. Socioeconomic systems must be equipped to react and adapt to global change. However, any reasonable development or assessment of sustainable adaptation strategies requires a comprehensive consideration of human-environment interactions. This requirement can be met through multi-agent simulation, as demonstrated in the interdisciplinary project GLOWA-Danube (GLObal change of the WAter Cycle; www.glowa-danube.de ). GLOWA-Danube has developed an integrated decision support tool for water and land use management in the Upper Danube catchment (parts of Germany and Austria, 77,000 km 2 ). The scientific disciplines invoked in the project have implemented sixteen natural and social science models, which are embedded in the simulation framework DANUBIA. Within DANUBIA, a multi-agent simulation approach is used to represent relevant socioeconomic processes. The structure and results of three of these multi-agent models, WaterSupply, Household and Tourism, are presented in this paper. A main focus of the paper is on the development of global change scenarios (climate and society) and their application to the presented models. The results of different simulation runs demonstrate the potential of multi-agent models to represent feedbacks between different water users and the environment. Moreover, the interactive usage of the framework allows to define and vary scenario assumptions so as to assess the impact of potential interventions. It is shown that integrated modelling and scenario design not only provide valuable information, but also offer a platform for discussing complex human-environment-interactions with stakeholders. Content Type Journal Article DOI 10.1007/s11027-010-9274-6 Authors Anja Soboll, Department of Geography, University of Munich, Luisenstrasse 37, 80333 Munich, Germany Michael Elbers, Center for Environmental Systems Research, University of Kassel, Kurt-Wolters-Strasse 3, 34109 Kassel, Germany Roland Barthel, Institute of Hydraulic Engineering, University of Stuttgart, Pfaffenwaldring 7a, 70569 Stuttgart, Germany Juergen Schmude, Department of Geography, University of Munich, Luisenstrasse 37, 80333 Munich, Germany Andreas Ernst, Center for Environmental Systems Research, University of Kassel, Kurt-Wolters-Strasse 3, 34109 Kassel, Germany Ralf Ziller, Institute of Hydraulic Engineering, University of Stuttgart, Pfaffenwaldring 7a, 70569 Stuttgart, Germany Journal Mitigation and Adaptation Strategies for Global Change Online ISSN 1573-1596 Print ISSN 1381-2386
    Print ISSN: 1381-2386
    Electronic ISSN: 1573-1596
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-08-23
    Description:    To avoid dangerous changes to the climate system, the global mean temperature must not rise more than 2 °C from the 19th century level. The German Advisory Council on Global Change recommends maintaining the rate of change in temperature to within 0.2 °C per decade. This paper supposes that a geoengineering option of solar radiation management (SRM) by injecting aerosol into the Earth’s stratosphere becomes applicable in the future to meet those temperature conditions. However, a failure to continue the use of this option could cause a rapid temperature rebound, and thus we propose a principle of SRM use that the temperature conditions must be satisfied even after SRM termination at any time. We present economically optimal trajectories of the amounts of SRM use and the reduction of carbon dioxide (CO 2 ) emissions under our principle by using an economic model of climate change. To meet the temperature conditions described above, the SRM must reduce radiative forcing by slightly more than 1 W/m 2 at most, and industrial CO 2 emissions must be cut by 80 % by the end of the 21st century relative to 2005, assuming a climate sensitivity of 3 °C. Lower-level use of SRM is required for a higher climate sensitivity; otherwise, the temperature will rise faster in the case of SRM termination. Considering potential economic damages of environmental side effects due to the use of SRM, the contribution of SRM would have to be much smaller. Content Type Journal Article Category Original Article Pages 1-26 DOI 10.1007/s11027-012-9414-2 Authors Takanobu Kosugi, College of Policy Science, Ritsumeikan University, 56-1 Toji-in Kitamachi, Kita-ku, Kyoto, 603-8577 Japan Journal Mitigation and Adaptation Strategies for Global Change Online ISSN 1573-1596 Print ISSN 1381-2386
    Print ISSN: 1381-2386
    Electronic ISSN: 1573-1596
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-03-30
    Description:    Nitrous oxide (N 2 O) emissions from grazed grasslands are estimated to be approximately 28% of global anthropogenic N 2 O emissions. Estimating the N 2 O flux from grassland soils is difficult because of its episodic nature. This study aimed to quantify the N 2 O emissions, the annual N 2 O flux and the emission factor (EF), and also to investigate the influence of environmental and soil variables controlling N 2 O emissions from grazed grassland. Nitrous oxide emissions were measured using static chambers at eight different grasslands in the South of Ireland from September 2007 to August 2009. The instantaneous N 2 O flux values ranged from -186 to 885.6 μg N 2 O-N m −2  h −1 and the annual sum ranged from 2 ± 3.51 to 12.55 ± 2.83 kg N 2 O-N ha −1  y −1 for managed sites. The emission factor ranged from 1.3 to 3.4%. The overall EF of 1.81% is about 69% higher than the Intergovernmental Panel on Climate Change (IPCC) default EF value of 1.25% which is currently used by the Irish Environmental Protection Agency (EPA) to estimate N 2 O emission in Ireland. At an N applied of approximately 300 kg ha −1  y −1 , the N 2 O emissions are approximately 5.0 kg N 2 O-N ha −1 y −1 , whereas the N 2 O emissions double to approximately 10 kg N ha −1 for an N applied of 400 kg N ha −1  y −1 . The sites with higher fluxes were associated with intensive N-input and frequent cattle grazing. The N 2 O flux at 17°C was five times greater than that at 5°C. Similarly, the N 2 O emissions increased with increasing water filled pore space (WFPS) with maximum N 2 O emissions occurring at 60–80% WFPS. We conclude that N application below 300 kg ha −1  y −1 and restricted grazing on seasonally wet soils will reduce N 2 O emissions. Content Type Journal Article Pages 1-20 DOI 10.1007/s10021-011-9434-x Authors Rashad Rafique, Department of Civil and Environmental Engineering, Centre for Hydrology, Micrometeorology and Climate Change, University College Cork, Cork, Ireland Deirdre Hennessy, Department of Animals &, Grassland Science Research, Teagasc-Moorpark, Fermoy, Ireland Gerard Kiely, Department of Civil and Environmental Engineering, Centre for Hydrology, Micrometeorology and Climate Change, University College Cork, Cork, Ireland Journal Ecosystems Online ISSN 1435-0629 Print ISSN 1432-9840
    Print ISSN: 1432-9840
    Electronic ISSN: 1435-0629
    Topics: Biology
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-06-30
    Description:    Agroforestry systems are widely practiced in tropical forests to recover degraded and deforested areas and also to balance the global carbon budget. However, our understanding of difference in soil respiration rates between agroforestry and natural forest systems is very limited. This study compared the seasonal variations in soil respiration rates in relation to fine root biomass, microbial biomass, and soil organic carbon between a secondary forest and two agroforestry systems dominated by Gmelina arborea and Dipterocarps in the Philippines during the dry and the wet seasons. The secondary forest had significantly higher ( p  〈 0.05) soil respiration rate, fine root biomass and soil organic matter than the agroforestry systems in the dry season. However, in the wet season, soil respiration and soil organic matter in the G. arborea dominated agroforestry system were as high as in the secondary forest. Whereas soil respiration was generally higher in the wet than in the dry season, there were no differences in fine root biomass, microbial biomass and soil organic matter between the two seasons. Soil respiration rate correlated positively and significantly with fine root biomass, microbial biomass, and soil organic C in all three sites. The results of this study indicate, to some degree, that different land use management practices have different effects on fine root biomass, microbial biomass and soil organic C which may affect soil respiration as well. Therefore, when introducing agroforestry system, a proper choice of species and management techniques which are similar to natural forest is recommended. Content Type Journal Article Pages 1-9 DOI 10.1007/s10457-012-9530-8 Authors Kikang Bae, Department of Forest and Natural Resources Management, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA Don Koo Lee, Department of Forest Science, Seoul National University, Seoul, 151-742 Korea Timothy J. Fahey, Department of Natural Resources, Cornell University, Ithaca, NY 14853, USA Soo Young Woo, Department of Environmental Horticulture, University of Seoul, Seoul, 130-743 Republic of Korea Amos K. Quaye, Department of Forest and Natural Resources Management, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA Yong-Kwon Lee, Korea Forest Service, Government Complex-Daejeon, Bldg 1, 189 Cheongsa-ro, Seo-gu, Daejeon, 302-701 Republic of Korea Journal Agroforestry Systems Online ISSN 1572-9680 Print ISSN 0167-4366
    Print ISSN: 0167-4366
    Electronic ISSN: 1572-9680
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-07-19
    Description:    This paper reviewed 42 studies of how local knowledge contributes to adaptation to climate and climate change in the Asia-Pacific Region. Most studies focused on traditional ecological or indigenous knowledge. Three simple questions were addressed: (1) How are changes in climate recognized? (2) What is known about how to adapt to changes in climate? (3) How do people learn about how to adapt? Awareness of change is an important element of local knowledge. Changes in climate are recognized at multiple time scales from observations that warn of imminent extreme weather through expectations for the next season to identification of multi-year historical trends. Observations are made of climate, its impact on physical resources, and bio-indicators. Local knowledge about how to adapt can be divided into four major classes: land and water management, physical infrastructure, livelihood strategies, and social institutions. Adaptation actions vary with time scale of interest from dealing with risks of disaster from extreme weather events, through slow onset changes such as seasonal droughts, to dealing with long-term multi-year shifts in climate. Local knowledge systems differ in the capacities and ways in which they support learning. Many are dynamic and draw on information from other places, whereas others are more conservative and tightly institutionalized. Past experience of events and ways of learning may be insufficient for dealing with a novel climate. Once the strengths and limitations of local knowledge (like those of science) are grasped the opportunities for meaningful hybridization of scientific and local knowledge for adaptation expand. Content Type Journal Article Pages 1-20 DOI 10.1007/s11027-012-9407-1 Authors Louis Lebel, Unit for Social and Environmental Research, Faculty of Social Sciences, Chiang Mai University, Chiang Mai, 50200 Thailand Journal Mitigation and Adaptation Strategies for Global Change Online ISSN 1573-1596 Print ISSN 1381-2386
    Print ISSN: 1381-2386
    Electronic ISSN: 1573-1596
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-09-03
    Description:    Soil carbon stocks and sequestration have been given a lot of attention recently in the study of terrestrial ecosystems and global climate change. This review focuses on the progress made on the estimation of the soil carbon stocks of China, and the characterization of carbon dynamics of croplands with regard to climate change, and addresses issues on the mineralization of soil organic carbon in relation to greenhouse gas emissions. By integrating existing research data, China’s total soil organic carbon (SOC) stock is estimated to be 90 Pg and its inorganic carbon (SIC) stock as 60 Pg, with SOC sequestration rates in the range of 20–25 Tg/a for the last two decades. An estimation of the biophysical potential of SOC sequestration has been generally agreed as being 2 Pg over the long term, of which only 1/3 could be attainable using contemporary agricultural technologies in all of China’s croplands. Thus, it is critical to enhance SOC sequestration and mitigate climate change to improve agricultural and land use management in China. There have been many instances where SOC accumulation may not induce an increased amount of decomposition under a warming scenario but instead favor improved cropland productivity and ecosystem functioning. Furthermore, unchanged or even decreased net global warming potential (GWP) from croplands with enhanced SOC has been reported by a number of case studies using life cycle analysis. Future studies on soil carbon stocks and the sequestration potential of China are expected to focus on: (1) Carbon stocks and the sequestration capacity of the earths’ surface systems at scales ranging from the plot to the watershed and (2) multiple interface processes and the synergies between carbon sequestration and ecosystem productivity and ecosystem functioning at scales from the molecular level to agro-ecosystems. Soil carbon science in China faces new challenges and opportunities to undertake integrated research applicable to many areas. Content Type Journal Article Category Review Pages 1-11 DOI 10.1007/s11434-011-4693-7 Authors JuFeng Zheng, Institute for Resource, Ecosystem and Environment of Agriculture, and Research Center of Agriculture and Climate Change, Nanjing Agricultural University, Nanjing, 210095 China Kun Cheng, Institute for Resource, Ecosystem and Environment of Agriculture, and Research Center of Agriculture and Climate Change, Nanjing Agricultural University, Nanjing, 210095 China GenXing Pan, Institute for Resource, Ecosystem and Environment of Agriculture, and Research Center of Agriculture and Climate Change, Nanjing Agricultural University, Nanjing, 210095 China Pete Smith, Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, 23 St Machar Drive, Aberdeen, AB24 3UU UK LianQing Li, Institute for Resource, Ecosystem and Environment of Agriculture, and Research Center of Agriculture and Climate Change, Nanjing Agricultural University, Nanjing, 210095 China XuHui Zhang, Institute for Resource, Ecosystem and Environment of Agriculture, and Research Center of Agriculture and Climate Change, Nanjing Agricultural University, Nanjing, 210095 China JinWei Zheng, Institute for Resource, Ecosystem and Environment of Agriculture, and Research Center of Agriculture and Climate Change, Nanjing Agricultural University, Nanjing, 210095 China XiaoJun Han, Institute for Resource, Ecosystem and Environment of Agriculture, and Research Center of Agriculture and Climate Change, Nanjing Agricultural University, Nanjing, 210095 China YanLing Du, Institute for Resource, Ecosystem and Environment of Agriculture, and Research Center of Agriculture and Climate Change, Nanjing Agricultural University, Nanjing, 210095 China Journal Chinese Science Bulletin Online ISSN 1861-9541 Print ISSN 1001-6538
    Print ISSN: 1001-6538
    Electronic ISSN: 1861-9541
    Topics: Natural Sciences in General
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-03-13
    Description:    Since Westman (1977) and Ehrlich (1982) put forward the concepts of “the service of nature” and “ecosystem service functions”, respectively, methods for conducting value accounting for them, and their practical application have become the subjects of intense study. Based on an overview of available research findings, we discuss three scientific hypotheses. First, the terrestrial ecosystem offers both positive and negative service functions. Second, changes in terrestrial ecosystem service functions lie not only in the number of ecosystem types and the coverage area of each type, but also in their quality. Third, the value of terrestrial ecosystem service functions should be assessed both in terms of the value stocked and the value added. We collected land use data from China during the period 1999–2008, and Normalized Difference Vegetation Index data based on remote sensing images from the Global Inventory Modeling and Mapping Studies for the same period. We then calculated and analyzed spatial and temporal changes in China’s terrestrial ecosystem service values over the 10-year period. Considering temporal change, the total value (stocked) of China’s terrestrial ecosystem service functions decreased from 6.82 trillion Yuan RMB in 1999 to 6.57 trillion Yuan RMB in 2008. During that period, the positive value decreased by 240.17 billion Yuan RMB and the negative value increased by 8.85 billion Yuan RMB. The decrease in total value lies mainly in the humidity control, soil formation, and waste recycling functions. The total value (added) of China’s terrestrial ecosystem service functions increased by 4.31 billion Yuan RMB in 2000, but decreased by 0.13 billion Yuan RMB in 2008 (based on the constant price of China in 1999). The value (added) was a negative figure. From the perspective of spatial change, we can see that the supply of China’s terrestrial ecosystem service functions fell slightly over the past 10 years, mainly in Northeast and Southern China. As a result of human activities on ecosystems, the loss of ecosystem service functions’ value was relatively prominent in Shanxi and Gansu provinces, compared with an increase in value in Shaanxi Province. Terrestrial ecosystem service functions’ value per unit area was relatively high in mid- and East China, showing a prominent spatial change over the 10-year period, but low in Western China. Some conclusions are drawn after an in-depth analysis of the factors causing the spatial and temporal changes in China’s terrestrial ecosystem service functions, in the hope that our suggestions will be helpful for the management of China’s terrestrial ecosystems. Content Type Journal Article Category Article Pages 1-12 DOI 10.1007/s11434-012-4978-5 Authors Yao Shi, State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China RuSong Wang, State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China JinLou Huang, State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China WenRui Yang, Beijing Municipal Institute of City Planning and Design, Beijing, 100045 China Journal Chinese Science Bulletin Online ISSN 1861-9541 Print ISSN 1001-6538
    Print ISSN: 1001-6538
    Electronic ISSN: 1861-9541
    Topics: Natural Sciences in General
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...