GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • Articles  (2)
  • Stanford Journal of Law, Science, and Policy  (1)
  • Landscape Ecology  (1)
  • 195768
  • 2070
  • Political Science  (1)
  • Biology  (1)
Document type
  • Journals
  • Articles  (2)
Source
Publisher
Years
Topic
  • 1
    Publication Date: 2012-09-22
    Description:    European larch ( Larix decidua Mill.) forests in the Alps are cultural landscapes that have been shaped by humans for centuries through traditional management. Biological and historical data sources were employed, and a multi-scale approach was adopted to capture the influence of factors affecting the structure of these forests. Landscape and stand scale dynamics were analyzed in four watersheds (c. 13,000 ha) of the western and central Italian Alps that have experienced different land-use intensities. Observed landscape changes were generalized using path analyses developed from a common conceptual model. Stand structure and a range of environmental variables were sampled in 203 circular plots, and land use and anthropogenic variables were derived from thematic maps and aerial photographs. We used multivariate statistical analyses (ordination and SEM models) to relate forest structure, anthropogenic influences, land uses, and topography. The most commonly observed land cover transition was an expansion of forests at the expense of open areas. All studied watersheds were dominated by larch forests, but their structure and spatial pattern differed greatly. Anthropogenic variables were less important at Ventina, the least accessible site, but emerged as fundamental to explain stand structure in the other study sites. Complexity of topography and proximity to roads had influenced past human activities mainly in the most accessible sites. Regeneration density was greatest at lower elevations and closer to human settlements. Quantification of the role played by forest harvesting and cattle grazing in past centuries is critical for understanding how global change factors may influence future dynamics of mountain forests in the European Alps and similar cultural landscapes worldwide. Content Type Journal Article Category Research Article Pages 1-13 DOI 10.1007/s10980-012-9792-6 Authors Matteo Garbarino, Department of Agronomy, Forest and Land Management, University of Torino, Via L. da Vinci 44, 10095 Grugliasco, TO, Italy Emanuele Lingua, Department of Land, Environment, Agriculture and Forestry, University of Padova, Agripolis, Viale dell’Università 16, 35020 Legnaro, PD, Italy Peter J. Weisberg, Department of Natural Resources and Environmental Science, University of Nevada Reno, Mail Stop 186, Reno, NV 89557, USA Alessandra Bottero, Department of Agronomy, Forest and Land Management, University of Torino, Via L. da Vinci 44, 10095 Grugliasco, TO, Italy Fabio Meloni, Department of Agronomy, Forest and Land Management, University of Torino, Via L. da Vinci 44, 10095 Grugliasco, TO, Italy Renzo Motta, Department of Agronomy, Forest and Land Management, University of Torino, Via L. da Vinci 44, 10095 Grugliasco, TO, Italy Journal Landscape Ecology Online ISSN 1572-9761 Print ISSN 0921-2973
    Print ISSN: 0921-2973
    Electronic ISSN: 1572-9761
    Topics: Biology
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-03-18
    Description: Global climate change is exerting profound effects on organisms and ecosystems. As resource managers and policymakers must contend with the ongoing and future effects of global climate change, they challenge scientists to predict where, when, and with what magnitude these effects are most likely to occur. By understanding the processes by which human-managed and natural ecosystems respond to a changing climate, and by quantifying levels of confidence in our ability to predict these effects, we may be able to prepare for some of these impacts, a form of adaptation to climate change. Here, we describe how knowledge of physiology can help to inform management decisions. Because physiological tolerance to environmental factors varies between species, there will likely be “winners” and “losers” in the face of climate change. We explore how a failure to consider the details of an organism’s physiology and ecology can hamper efforts to respond proactively to climate change and, conversely, how an understanding of how nonhuman organisms interact with their environment can help to provide a framework for anticipating and preparing for future changes in natural and managed ecosystems. We examine some of the physiological responses of marine organisms to climate change in three examples: thermal stress in marine invertebrates, ramifications of water temperature changes on fish bioenergetics and thus on fish reproduction and growth, and effects of changes in wave forces on damage to corals and kelp. Because factors such as temperature interact with other stressors like overexploitation and pollution to drive patterns of mortality, it may be possible to prevent some damage by reducing the impact of stressors not related to climate change. Methods such as ecological forecasting and the utilization of bioenergetic budgets can be used to help guide future adaptation to climate change by providing forecasts within a probabilistic framework. Author:  Brian Helmuth Lauren Yamane Katharine J. Mach Shilpi Chhotray Phil Levin Sarah Woodin Issue:  Climate change Download:  61_Helmuth Final.pdf
    Electronic ISSN: 2161-2331
    Topics: Natural Sciences in General , Political Science , Law
    Published by Stanford University
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...