GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-02-04
    Description: Purpose   The main goal of this paper was to analyse the environmental profile of a structural component of a wooden house: a ventilated wooden wall, by combining two environmental methodologies: one quantitative, the life cycle assessment (LCA) and another qualitative, the design for the environment (DfE). Methods   The LCA study covers the whole life cycle of the ventilated wall manufacture as well as its distribution, installation and maintenance. To carry out this analysis, a Galician wood company was assessed in detail, dividing the process into four stages: the assembling stage, the packing stage, the distribution to clients as well as the final installation and maintenance of the wooden wall. Ten impact categories have been assessed in detail in the LCA study: abiotic depletion (AD), acidification (AC), eutrophication (EP), global warming (GW), ozone layer depletion (OD), human toxicity (HT), fresh water aquatic ecotoxicity (FE), marine aquatic ecotoxicity (ME), terrestrial ecotoxicity (TE) and photochemical oxidant formation (PO). Results and discussion   According to the environmental results, the assembling stage was the most important contributor to the environmental profile with contributions from 57% to 87%, followed by the production of the electricity required. The detailed analysis of the assembling stage identified the most important environmental hot spots: the production of boards used in the structure [oriented strand board and medium density fibreboard (MDF)] as well as the transportation of the cedar sheets from Brazil. Concerning the results of the DfE, a selection of different eco-design strategies was proposed from technological, economic and social points of view by an interdisciplinary team of researchers and company´s workers. The eco-design strategy considered the following improvement actions: (i) the substitution of the MDF in the wall structure; (ii) the use of German red pine sheets; (iii) the installation of solar panels in the facilities; (iv) the use of Euro 5 transport vehicles, (v) the use of biodiesel for transport; (vi) the definition of a maintenance protocol for the wooden materials; and (vii) the definition of a protocol for the separation of materials before disposal. Conclusions   The results obtained in this work allow predicting the influence of the selection and origin of the raw materials used on the environmental burdens associated with the process. Future work will focus on the manufacturing of a prototype of an eco-designed ventilated wooden wall. Content Type Journal Article Category WOOD AND OTHER RENEWABLE RESOURCES Pages 1-12 DOI 10.1007/s11367-012-0384-0 Authors Sara González-García, Department of Life Sciences, Division of Biology, Imperial College of London, South Kensington Campus, Sir Alexander Fleming Buildings, London, SW7 2AZ UK Raúl García Lozano, SosteniPrA (UAB-IRTA-Inèdit), Institute of Environmental Science and Technology (ICTA), School of Engineering, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Catalonia, Spain Javier Costas Estévez, Quality Management Department, Las cinco Jotas, Avda. Camelias No 1, 6203 Vigo, Spain Rosario Castilla Pascual, Innovation and Technology Area, CIS MADEIRA, Galician Park of Technology, Avenida de Galicia 5, San Cibrao das Viñas, 32901 Ourense, Spain Ma. Teresa Moreira, Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain Xavier Gabarrell, SosteniPrA (UAB-IRTA-Inèdit), Institute of Environmental Science and Technology (ICTA), School of Engineering, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Catalonia, Spain Joan Rieradevall i Pons, SosteniPrA (UAB-IRTA-Inèdit), Institute of Environmental Science and Technology (ICTA), School of Engineering, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Catalonia, Spain Gumersindo Feijoo, Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain Journal The International Journal of Life Cycle Assessment Online ISSN 1614-7502 Print ISSN 0948-3349
    Print ISSN: 0948-3349
    Electronic ISSN: 1614-7502
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Economics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-09-10
    Description: Purpose   At present, many urban areas in Mediterranean climates are coping with water scarcity, facing a growing water demand and a limited conventional water supply. Urban design and planning has so far largely neglected the benefits of rainwater harvesting (RWH) in the context of a sustainable management of this resource. Therefore, the purpose of this study was to identify the most environmentally friendly strategy for rainwater utilization in Mediterranean urban environments of different densities. Materials and methods   The RWH systems modeled integrate the necessary infrastructures for harvesting and using rainwater in newly constructed residential areas. Eight scenarios were defined in terms of diffuse (D) and compact (C) urban models and the tank locations ((1) underground tank, (2) below-roof tank, (3) distributed-over-roof tank, and (4) block tank). The structural and hydraulic sizing of the catchment, storage, and distribution subsystems was taken into account using an average Mediterranean rainfall, the area of the harvesting surfaces, and a constant water demand for laundry. The quantification of environmental impacts was performed through a life cycle assessment, using CML 2001 Baseline method. The necessary materials and processes were considered in each scenario according to the lifecycle stages (i.e., materials, construction, transportation, use, and deconstruction) and subsystems. Results and discussion   The environmental characterization indicated that the best scenario in both urban models is the distributed-over-roof tank (D3, C3), which provided a reduction in impacts compared to the worst scenario of up to 73% in diffuse models and even higher in compact ones, 92% in the most dramatic case. The lower impacts are related to the better distribution of tank weight on the building, reducing the reinforcement requirements, and enabling energy savings. The storage subsystem and the materials stage contributed most significantly to the impacts in both urban models. In the compact density model, the underground-tank scenario (C1) presented the largest impacts in most categories due to its higher energy consumption. Additionally, more favorable environmental results were observed in compact densities than in diffuse ones for the Global Warming Potential category along with higher water efficiencies. Conclusions   The implementation of one particular RWH scenario over another is not irrelevant in drought-stress environments. Selecting the most favorable scenario in the development of newly constructed residential areas provides significant savings in CO 2 emissions in comparison with retrofit strategies. Therefore, urban planning should consider the design of RWH infrastructures using environmental criteria in addition to economic, social, and technological factors, adjusting the design to the potential uses for which the rainwater is intended. Recommendations and perspectives   Additional research is needed to quantify the energy savings associated with the insulation caused by using the tank distributed over the roof. The integration of the economic and social aspects of these infrastructures in the analysis, from a life cycle approach, is necessary for targeting the planning and design of more sustainable cities in an integrated way. Content Type Journal Article Category WATER USE IN LCA Pages 1-18 DOI 10.1007/s11367-011-0330-6 Authors Sara Angrill, Sostenipra (ICTA-IRTA-Inèdit), Institute of Environmental Science and Technology (ICTA), School of Engineering (EE), Universitat Autònoma de Barcelona (UAB), Campus of the UAB, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Catalonia, Spain Ramon Farreny, Sostenipra (ICTA-IRTA-Inèdit), Institute of Environmental Science and Technology (ICTA), School of Engineering (EE), Universitat Autònoma de Barcelona (UAB), Campus of the UAB, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Catalonia, Spain Carles M. Gasol, Sostenipra (ICTA-IRTA-Inèdit), Institute of Environmental Science and Technology (ICTA), School of Engineering (EE), Universitat Autònoma de Barcelona (UAB), Campus of the UAB, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Catalonia, Spain Xavier Gabarrell, Sostenipra (ICTA-IRTA-Inèdit), Institute of Environmental Science and Technology (ICTA), School of Engineering (EE), Universitat Autònoma de Barcelona (UAB), Campus of the UAB, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Catalonia, Spain Bernat Viñolas, Department of Geotechnical Engineering and Geosciences, School of Civil Engineering (ETSECCPB), Technical University of Catalonia—Barcelona Tech (UPC), Campus Nord, C/ Jordi Girona 1-3, Building D2, 08034 Barcelona, Catalonia, Spain Alejandro Josa, Department of Geotechnical Engineering and Geosciences, School of Civil Engineering (ETSECCPB), Technical University of Catalonia—Barcelona Tech (UPC), Campus Nord, C/ Jordi Girona 1-3, Building D2, 08034 Barcelona, Catalonia, Spain Joan Rieradevall, Sostenipra (ICTA-IRTA-Inèdit), Institute of Environmental Science and Technology (ICTA), School of Engineering (EE), Universitat Autònoma de Barcelona (UAB), Campus of the UAB, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Catalonia, Spain Journal The International Journal of Life Cycle Assessment Online ISSN 1614-7502 Print ISSN 0948-3349
    Print ISSN: 0948-3349
    Electronic ISSN: 1614-7502
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Economics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-05-05
    Description:    Globally, urban growth will add 1.5 billion people to cities by 2030, making the difficult task of urban water provisions even more challenging. In this article, we develop a conceptual framework of urban water provision as composed of three axes: water availability, water quality, and water delivery. For each axis, we calculate quantitative proxy measures for all cities with more than 50,000 residents, and then briefly discuss the strategies cities are using in response if they are deficient on one of the axes. We show that 523 million people are in cities where water availability may be an issue, 890 million people are in cities where water quality may be an issue, and 1.3 billion people are in cities where water delivery may be an issue. Tapping into groundwater is a widespread response, regardless of the management challenge, with many cities unsustainably using this resource. The strategies used by cities deficient on the water delivery axis are different than for cities deficient on the water quantity or water quality axis, as lack of financial resources pushes cities toward a different and potentially less effective set of strategies. Content Type Journal Article Pages 1-10 DOI 10.1007/s13280-011-0152-6 Authors Robert I. McDonald, Worldwide Office, The Nature Conservancy, 4245 N. Fairfax Drive, Arlington, VA 22203, USA Ian Douglas, School of Environment and Development, University of Manchester, Oxford Road, Manchester, M13 9PL UK Carmen Revenga, Worldwide Office, The Nature Conservancy, 4245 N. Fairfax Drive, Arlington, VA 22203, USA Rebecca Hale, School of Life Sciences, Arizona State University, 1711 South Rural Road, Tempe, AZ 85287, USA Nancy Grimm, Faculty of Ecology, Evolution, & Environmental Science, Arizona State University, 1711 South Rural Road, Tempe, AZ 85287, USA Jenny Grönwall, 110 Marlyn Lodge, Portsoken St, London, E1 8RB UK Balazs Fekete, CUNY Research Foundation, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA Journal AMBIO: A Journal of the Human Environment Online ISSN 1654-7209 Print ISSN 0044-7447
    Print ISSN: 0044-7447
    Electronic ISSN: 1654-7209
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer on behalf of The Royal Swedish Academy of Sciences.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-03-22
    Description:    Geoengineering methods are intended to reduce climate change, which is already having demonstrable effects on ecosystem structure and functioning in some regions. Two types of geoengineering activities that have been proposed are: carbon dioxide (CO 2 ) removal (CDR), which removes CO 2 from the atmosphere, and solar radiation management (SRM, or sunlight reflection methods), which reflects a small percentage of sunlight back into space to offset warming from greenhouse gases (GHGs). Current research suggests that SRM or CDR might diminish the impacts of climate change on ecosystems by reducing changes in temperature and precipitation. However, sudden cessation of SRM would exacerbate the climate effects on ecosystems, and some CDR might interfere with oceanic and terrestrial ecosystem processes. The many risks and uncertainties associated with these new kinds of purposeful perturbations to the Earth system are not well understood and require cautious and comprehensive research. Content Type Journal Article Category Review Paper Pages 1-20 DOI 10.1007/s13280-012-0258-5 Authors Lynn M. Russell, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Dr. Mail Code 0221, La Jolla, CA 92093-0221, USA Philip J. Rasch, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P. O. Box 999, MSIN K9-34, Richland, WA 99352, USA Georgina M. Mace, Centre for Population Biology, Imperial College London, Ascot, Berks SL5 7PY, UK Robert B. Jackson, Nicholas School of the Environment, Duke University, Durham, NC 27708, USA John Shepherd, Earth System Science, School of Ocean and Earth Sciences, National Oceanography Centre, University of Southampton, European Way, Southampton, SO14 3ZH UK Peter Liss, School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ UK Margaret Leinen, Harbor Branch Oceanographic Institute, 5600 US Rt 1 North, Fort Pierce, FL 34946, USA David Schimel, NEON Inc, 1685 38th Street, Boulder, CO 80305, USA Naomi E. Vaughan, Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK Anthony C. Janetos, Joint Global Change Research Institute Pacific Northwest National Laboratory/University of Maryland, 5825 University Research Court, Suite 3500, College Park, MD 20740, USA Philip W. Boyd, NIWA Centre of Chemical & Physical Oceanography, Department of Chemistry, University of Otago, Dunedin, New Zealand Richard J. Norby, Environmental Sciences Division, Oak Ridge National Laboratory, Bethel Valley Road, Bldg. 2040, MS-6301, Oak Ridge, TN 37831-6301, USA Ken Caldeira, Department of Global Ecology, Carnegie Institution, Stanford, CA 94305, USA Joonas Merikanto, Division of Atmospheric Sciences, Department of Physics, University of Helsinki, P.O Box 64, 00014 Helsinki, Finland Paulo Artaxo, Institute of Physics, University of São Paulo, Rua do Matão, Travessa R, 187, São Paulo, SP CEP 05508-090, Brazil Jerry Melillo, The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA M. Granger Morgan, Department of Engineering and Public Policy, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA Journal AMBIO: A Journal of the Human Environment Online ISSN 1654-7209 Print ISSN 0044-7447
    Print ISSN: 0044-7447
    Electronic ISSN: 1654-7209
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer on behalf of The Royal Swedish Academy of Sciences.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-04-30
    Description: Purpose   Land use is a main driver of global biodiversity loss and its environmental relevance is widely recognized in research on life cycle assessment (LCA). The inherent spatial heterogeneity of biodiversity and its non-uniform response to land use requires a regionalized assessment, whereas many LCA applications with globally distributed value chains require a global scale. This paper presents a first approach to quantify land use impacts on biodiversity across different world regions and highlights uncertainties and research needs. Methods   The study is based on the United Nations Environment Programme (UNEP)/Society of Environmental Toxicology and Chemistry (SETAC) land use assessment framework and focuses on occupation impacts, quantified as a biodiversity damage potential (BDP). Species richness of different land use types was compared to a (semi-)natural regional reference situation to calculate relative changes in species richness. Data on multiple species groups were derived from a global quantitative literature review and national biodiversity monitoring data from Switzerland. Differences across land use types, biogeographic regions (i.e., biomes), species groups and data source were statistically analyzed. For a data subset from the biome (sub-)tropical moist broadleaf forest, different species-based biodiversity indicators were calculated and the results compared. Results and discussion   An overall negative land use impact was found for all analyzed land use types, but results varied considerably. Different land use impacts across biogeographic regions and taxonomic groups explained some of the variability. The choice of indicator also strongly influenced the results. Relative species richness was less sensitive to land use than indicators that considered similarity of species of the reference and the land use situation. Possible sources of uncertainty, such as choice of indicators and taxonomic groups, land use classification and regionalization are critically discussed and further improvements are suggested. Data on land use impacts were very unevenly distributed across the globe and considerable knowledge gaps on cause–effect chains remain. Conclusions   The presented approach allows for a first rough quantification of land use impact on biodiversity in LCA on a global scale. As biodiversity is inherently heterogeneous and data availability is limited, uncertainty of the results is considerable. The presented characterization factors for BDP can approximate land use impacts on biodiversity in LCA studies that are not intended to directly support decision-making on land management practices. For such studies, more detailed and site-dependent assessments are required. To assess overall land use impacts, transformation impacts should additionally be quantified. Therefore, more accurate and regionalized data on regeneration times of ecosystems are needed. Content Type Journal Article Category GLOBAL LAND USE IMPACTS ON BIODIVERSITY AND ECOSYSTEM SERVICES IN LCA Pages 1-15 DOI 10.1007/s11367-012-0412-0 Authors Laura de Baan, Institute for Environmental Decisions, Natural and Social Science Interface, ETH Zurich, Universitaetsstr. 22, 8092 Zurich, Switzerland Rob Alkemade, PBL Netherlands Environmental Assessment Agency, P. O. Box 303, 3720 AH Bilthoven, The Netherlands Thomas Koellner, Professorship of Ecological Services, Faculty of Biology, Chemistry and Geosciences, University of Bayreuth, GEO II, Room 1.17, Universitaetsstr. 30, 95440 Bayreuth, Germany Journal The International Journal of Life Cycle Assessment Online ISSN 1614-7502 Print ISSN 0948-3349
    Print ISSN: 0948-3349
    Electronic ISSN: 1614-7502
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Economics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-07-16
    Description: Purpose   The aim of this paper is to provide science-based consensus and guidance for health effects modelling in comparative assessments based on human exposure and toxicity. This aim is achieved by (a) describing the USEtox™ exposure and toxicity models representing consensus and recommended modelling practice, (b) identifying key mechanisms influencing human exposure and toxicity effects of chemical emissions, (c) extending substance coverage. Methods   The methods section of this paper contains a detailed documentation of both the human exposure and toxic effects models of USEtox™, to determine impacts on human health per kilogram substance emitted in different compartments. These are considered as scientific consensus and therefore recommended practice for comparative toxic impact assessment. The framework of the exposure model is described in details including the modelling of each exposure pathway considered (i.e. inhalation through air, ingestion through (a) drinking water, (b) agricultural produce, (c) meat and milk, and (d) fish). The calculation of human health effect factors for cancer and non-cancer effects via ingestion and inhalation exposure respectively is described. This section also includes discussions regarding parameterisation and estimation of input data needed, including route-to-route and acute-to-chronic extrapolations. Results and discussion   For most chemicals in USEtox™, inhalation, above-ground agricultural produce, and fish are the important exposure pathways with key driving factors being the compartment and place of emission, partitioning, degradation, bioaccumulation and bioconcentration, and dietary habits of the population. For inhalation, the population density is the key factor driving the intake, thus the importance to differentiate emissions in urban areas, except for very persistent and mobile chemicals that are taken in by the global population independently from their place of emission. The analysis of carcinogenic potency (TD 50 ) when volatile chemicals are administrated to rats and mice by both inhalation and an oral route suggests that results by one route can reasonably be used to represent another route. However, we first identify and mark as interim chemicals for which observed tumours are directly related to a given exposure route (e.g. for nasal or lung, or gastrointestinal cancers) or for which absorbed fraction by inhalation and by oral route differ greatly. Conclusions   A documentation of the human exposure and toxicity models of USEtox™ is provided, and key factors driving the human health characterisation factor are identified. Approaches are proposed to derive human toxic effect factors and expand the number of chemicals in USEtox™, primarily by extrapolating from an oral route to exposure in air (and optionally acute-to-chronic). Some exposure pathways (e.g. indoor inhalation, pesticide residues, dermal exposure) will be included in a later stage. USEtox™ is applicable in various comparative toxicity impact assessments and not limited to LCA. Content Type Journal Article Pages 1-18 DOI 10.1007/s11367-011-0316-4 Authors Ralph K. Rosenbaum, Section for Quantitative Sustainability Assessment, Department of Management Engineering, Technical University of Denmark (DTU), Produktionstorvet, Building 426, 2800 Lyngby, Denmark Mark A. J. Huijbregts, Department of Environmental Science, Radboud University Nijmegen, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands Andrew D. Henderson, Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA Manuele Margni, Department of Chemical Engineering, CIRAIG, École Polytechnique de Montréal, 2900 Édouard-Montpetit, P.O. Box 6079, Stn. Centre-ville, Montréal, Québec H3C 3A7, Canada Thomas E. McKone, University of California Berkeley, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA Dik van de Meent, Department of Environmental Science, Radboud University Nijmegen, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands Michael Z. Hauschild, Section for Quantitative Sustainability Assessment, Department of Management Engineering, Technical University of Denmark (DTU), Produktionstorvet, Building 426, 2800 Lyngby, Denmark Shanna Shaked, Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA Ding Sheng Li, Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA Lois S. Gold, University of California Berkeley, and Children’s Hospital Oakland Research Institute (CHORI), Oakland, CA, USA Olivier Jolliet, Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA Journal The International Journal of Life Cycle Assessment Online ISSN 1614-7502 Print ISSN 0948-3349
    Print ISSN: 0948-3349
    Electronic ISSN: 1614-7502
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Economics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-10-08
    Description: Purpose   In general, pentachloroaniline (PCA) biodechlorination is specific to the conditions of a system; such conditions include the type and concentration of electron donors and oxidizing agents as well as nutrient availability, pH, and temperature. In the bioremediation of contaminated sediments and soil, most researchers have focused on the ability of various electron donors to remove target compounds. However, the amended electron donors and the byproduct of the anoxic/anaerobic systems may cause more environmental impact. Therefore, methods for consistently evaluating the environmental effects of such electron donors and byproducts are highly needed. Accordingly, life cycle assessment (LCA) was carried out to estimate the environmental effect of PCA biodechlorination under acidogenic/methanogenic conditions through laboratory-scale experiments. Four scenarios, intended to assess the influence of electron donors on the environment and develop laboratory experimental research, were compared. In these scenarios, four compounds were used: acetate, lactate, methanol, and glucose + methanol. Materials and methods   The LCA was carried out using IMPACT2002+ to estimate the environmental impact of PCA biodechlorination under acidogenic/methanogenic conditions. To add credibility to the study, sensitivity analysis was also conducted. Results and discussion   In all scenarios, the technologies significantly contributed to respiratory inorganics, global warming, as well as increased the adverse impact of nonrenewable energy on the environment. Specifically, the emissions from the electron donor production processes played an important role in the scenarios. PCA dechlorination and methanogenic processes substantially contributed to the aquatic/terrestrial ecotoxicity and global warming, respectively. Optimizing the concentration of amended electron donors and increasing the population size of dechlorinating microorganisms are highly important in reducing the environmental burden by PCA bioremediation. Conclusions   Results showed that the methanol scenario was the most suitable option determined in this research. In addition, results indicate amended electron donors can cause fewer environmental impacts in carcinogens and noncarcinogens categories. By contrast, the amended electron donors can significantly increase environmental impacts in respiratory inorganics, global warming, and nonrenewable energy categories. Increasing the population size of dechlorinating microorganisms and optimizing the concentration of amended electron donors are highly recommended to reduce adverse environmental impacts. Content Type Journal Article Category LIFE CYCLE MANAGEMENT Pages 1-10 DOI 10.1007/s11367-011-0338-y Authors Jinglan Hong, Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100 Shandong, People’s Republic of China Xiangzhi Li, Shandong University School of Medicine, Jinan, 250012 Shandong, People’s Republic of China Journal The International Journal of Life Cycle Assessment Online ISSN 1614-7502 Print ISSN 0948-3349
    Print ISSN: 0948-3349
    Electronic ISSN: 1614-7502
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Economics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-09-03
    Description:    Before climate change is considered in long-term coastal management, it is necessary to investigate how institutional stakeholders in coastal management conceptualize climate change, as their awareness will ultimately affect their actions. Using questionnaires in eight Baltic Sea riparian countries, this study examines environmental managers’ awareness of climate change. Our results indicate that problems related to global warming are deemed secondary to short-term social and economic issues. Respondents agree that problems caused by global warming will become increasingly important, but pay little attention to adaptation and mitigation strategies. Current environmental problems are expected to continue to be urgent in the future. We conclude that an apparent gap exists between decision making, public concerns, and scientific consensus, resulting in a situation in which the latest evidence rarely influences commonly held opinions. Content Type Journal Article Pages 645-655 DOI 10.1007/s13280-012-0327-9 Authors Joanna Piwowarczyk, Department of Marine Ecology, Institute of Oceanology, Polish Academy of Sciences, 55 Powstancow Warszawy Street, 81-712 Sopot, Poland Anders Hansson, Centre for Climate Science and Policy Research and Water and Environmental Studies, Department of Thematic Studies, Linköping University, Norrköping, Sweden Mattias Hjerpe, Centre for Climate Science and Policy Research and Water and Environmental Studies, Department of Thematic Studies, Linköping University, Norrköping, Sweden Boris Chubarenko, Atlantic Branch of the Institute of Oceanology, Russian Academy of Sciences, Kaliningrad, Russia Konstantin Karmanov, Atlantic Branch of the Institute of Oceanology, Russian Academy of Sciences, Kaliningrad, Russia Journal AMBIO: A Journal of the Human Environment Online ISSN 1654-7209 Print ISSN 0044-7447 Journal Volume Volume 41 Journal Issue Volume 41, Number 6
    Print ISSN: 0044-7447
    Electronic ISSN: 1654-7209
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer on behalf of The Royal Swedish Academy of Sciences.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-05-12
    Description:    Under increasing water scarcity, collective groundwater management is a global concern. This article presents an interdisciplinary analysis of this challenge drawing on a survey including 50 large and small farms and gardens in a village in an agricultural land reclamation area on the edge of the Western Desert of Egypt. Findings revealed that smallholders rely on a practice of shallow groundwater use, through which drainage water from adjacent irrigation areas is effectively recycled within the surface aquifer. Expanding agroindustrial activities in the surrounding area are socio-economically important, but by mining non-renewable water in the surrounding area, they set in motion a degradation process with social and ecological consequences for all users in the multi-layered aquifer system. Based on the findings of our investigation, we identify opportunities for local authorities to more systematically connect available environmental information sources and common pool resource management precedents, to counterbalance the degradation threat. Content Type Journal Article Category Report Pages 1-14 DOI 10.1007/s13280-012-0255-8 Authors Caroline King, Oxford University Centre for the Environment, University of Oxford, South Parks Road, Oxford, UK Boshra Salem, Department of Environmental Sciences, Faculty of Science, University of Alexandria, Alexandria, Egypt Journal AMBIO: A Journal of the Human Environment Online ISSN 1654-7209 Print ISSN 0044-7447
    Print ISSN: 0044-7447
    Electronic ISSN: 1654-7209
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer on behalf of The Royal Swedish Academy of Sciences.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-03-10
    Description: Purpose   Sustainable manufacturing is practiced globally as a comprehensive strategy for improving the sustainability performance of the manufacturing industry. While sustainability is characterized into such three dimensions as economic, environmental, and social, currently, there is no quantitative method yet to measure the so-called “sustainability” in the manufacturing industry. The objective of this research is to develop a comprehensive and effective quantitative method to measure the overall sustainability performance of manufacturing companies. Methods   In this paper, an integrated methodology is presented for the development of composite sustainability indicators based on principal component analysis (PCA). In developing this integrated approach, both industry and academia surveys are conducted to identify what sustainability indicators are favored by the sustainable manufacturing community. A unique index is then generated to measure the overall sustainability performance of industrial practices. The methodology can be used for benchmarking the overall sustainability performance of various manufacturing companies. Results   A case study is conducted on a total of 11 global electronic manufacturing companies. The overall sustainability performance of these companies are measured, benchmarked, and ranked. The results showed that PCA is an effective approach for constructing composite sustainability indicators across environmental, economic, and social dimensions. Conclusions   From this research, it is found that industry and academia have different views on the sustainability measurement, evidenced by different weights put on the same indicator in industry and academia. The case study demonstrated that the methodology presented in this paper is an effective tool for comprehensive measurement of sustainability performance of manufacturing companies. Strengths and weaknesses of each company can be identified. Then, the recommended improvements can be suggested based on the study of each of the individual indicators. Content Type Journal Article Category SUSTAINABLE DEVELOPMENT Pages 1-11 DOI 10.1007/s11367-012-0394-y Authors Tao Li, School of Mechanical Engineering, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116023, People’s Republic of China Hongchao Zhang, School of Mechanical Engineering, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116023, People’s Republic of China Chris Yuan, Department of Mechanical Engineering, University of Wisconsin, Milwaukee, WI, USA Zhichao Liu, School of Mechanical Engineering, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116023, People’s Republic of China Chengcheng Fan, Department of Management Science and Engineering, Stanford University, Stanford, CA, USA Journal The International Journal of Life Cycle Assessment Online ISSN 1614-7502 Print ISSN 0948-3349
    Print ISSN: 0948-3349
    Electronic ISSN: 1614-7502
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Economics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...