GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (5)
  • 2010-2014  (5)
  • 2012  (5)
  • AMBIO: A Journal of the Human Environment  (3)
  • Theoretical and Applied Climatology  (1)
  • Water Resources Management  (1)
  • 194672
  • 2251
  • 2664
  • 5819
  • 6304
  • 716
  • 87238
  • 88336
  • Energy, Environment Protection, Nuclear Power Engineering  (3)
  • Geography  (1)
  • Geosciences  (1)
  • Physics  (1)
Document type
  • Articles  (5)
Source
Publisher
Years
  • 2010-2014  (5)
Year
Topic
  • 1
    Publication Date: 2012-01-28
    Description:    This study aims to examine how future climate, temperature and precipitation specifically, are expected to change under the A2, A1B, and B1 emission scenarios over the six states that make up the Southern Climate Impacts Planning Program (SCIPP): Oklahoma, Texas, Arkansas, Louisiana, Tennessee, and Mississippi. SCIPP is a member of the National Oceanic and Atmospheric Administration-funded Regional Integrated Sciences and Assessments network, a program which aims to better connect climate-related scientific research with in-the-field decision-making processes. The results of the study found that the average temperature over the study area is anticipated to increase by 1.7°C to 2.4°C in the twenty-first century based on the different emission scenarios with a rate of change that is more pronounced during the second half of the century. Summer and fall seasons are projected to have more significant temperature increases, while the northwestern portions of the region are projected to experience more significant increases than the Gulf coast region. Precipitation projections, conversely, do not exhibit a discernible upward or downward trend. Late twenty-first century exhibits slightly more precipitation than the early century, based on the A1B and B1 scenario, and fall and winter are projected to become wetter than the late twentieth century as a whole. Climate changes on the city level show that greater warming will happened in inland cities such as Oklahoma City and El Paso, and heavier precipitation in Nashville. These changes have profound implications for local water resources management as well as broader regional decision making. These results represent an initial phase of a broader study that is being undertaken to assist SCIPP regional and local water planning efforts in an effort to more closely link climate modeling to longer-term water resources management and to continue assessing climate change impacts on regional hazards management in the South. Content Type Journal Article Category Original Paper Pages 1-16 DOI 10.1007/s00704-011-0567-9 Authors Lu Liu, School of Civil Engineering and Environmental Science, University of Oklahoma, 120 David L. Boren Blvd., National Weather Center ARRC 4610 Suite, Norman, OK 73072, USA Yang Hong, School of Civil Engineering and Environmental Science, University of Oklahoma, 120 David L. Boren Blvd., National Weather Center ARRC 4610 Suite, Norman, OK 73072, USA James E. Hocker, Southern Climate Impacts Planning Program, Oklahoma Climate Survey, University of Oklahoma, Norman, OK, USA Mark A. Shafer, Southern Climate Impacts Planning Program, Oklahoma Climate Survey, University of Oklahoma, Norman, OK, USA Lynne M. Carter, Southern Climate Impacts Planning Program, Louisiana State University, Baton Rouge, LA, USA Jonathan J. Gourley, NOAA/National Severe Storms Laboratory, Norman, OK 73072, USA Christopher N. Bednarczyk, School of Civil Engineering and Environmental Science, University of Oklahoma, 120 David L. Boren Blvd., National Weather Center ARRC 4610 Suite, Norman, OK 73072, USA Bin Yong, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098 China Pradeep Adhikari, School of Civil Engineering and Environmental Science, University of Oklahoma, 120 David L. Boren Blvd., National Weather Center ARRC 4610 Suite, Norman, OK 73072, USA Journal Theoretical and Applied Climatology Online ISSN 1434-4483 Print ISSN 0177-798X
    Print ISSN: 0177-798X
    Electronic ISSN: 1434-4483
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-03-22
    Description:    Geoengineering methods are intended to reduce climate change, which is already having demonstrable effects on ecosystem structure and functioning in some regions. Two types of geoengineering activities that have been proposed are: carbon dioxide (CO 2 ) removal (CDR), which removes CO 2 from the atmosphere, and solar radiation management (SRM, or sunlight reflection methods), which reflects a small percentage of sunlight back into space to offset warming from greenhouse gases (GHGs). Current research suggests that SRM or CDR might diminish the impacts of climate change on ecosystems by reducing changes in temperature and precipitation. However, sudden cessation of SRM would exacerbate the climate effects on ecosystems, and some CDR might interfere with oceanic and terrestrial ecosystem processes. The many risks and uncertainties associated with these new kinds of purposeful perturbations to the Earth system are not well understood and require cautious and comprehensive research. Content Type Journal Article Category Review Paper Pages 1-20 DOI 10.1007/s13280-012-0258-5 Authors Lynn M. Russell, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Dr. Mail Code 0221, La Jolla, CA 92093-0221, USA Philip J. Rasch, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P. O. Box 999, MSIN K9-34, Richland, WA 99352, USA Georgina M. Mace, Centre for Population Biology, Imperial College London, Ascot, Berks SL5 7PY, UK Robert B. Jackson, Nicholas School of the Environment, Duke University, Durham, NC 27708, USA John Shepherd, Earth System Science, School of Ocean and Earth Sciences, National Oceanography Centre, University of Southampton, European Way, Southampton, SO14 3ZH UK Peter Liss, School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ UK Margaret Leinen, Harbor Branch Oceanographic Institute, 5600 US Rt 1 North, Fort Pierce, FL 34946, USA David Schimel, NEON Inc, 1685 38th Street, Boulder, CO 80305, USA Naomi E. Vaughan, Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK Anthony C. Janetos, Joint Global Change Research Institute Pacific Northwest National Laboratory/University of Maryland, 5825 University Research Court, Suite 3500, College Park, MD 20740, USA Philip W. Boyd, NIWA Centre of Chemical & Physical Oceanography, Department of Chemistry, University of Otago, Dunedin, New Zealand Richard J. Norby, Environmental Sciences Division, Oak Ridge National Laboratory, Bethel Valley Road, Bldg. 2040, MS-6301, Oak Ridge, TN 37831-6301, USA Ken Caldeira, Department of Global Ecology, Carnegie Institution, Stanford, CA 94305, USA Joonas Merikanto, Division of Atmospheric Sciences, Department of Physics, University of Helsinki, P.O Box 64, 00014 Helsinki, Finland Paulo Artaxo, Institute of Physics, University of São Paulo, Rua do Matão, Travessa R, 187, São Paulo, SP CEP 05508-090, Brazil Jerry Melillo, The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA M. Granger Morgan, Department of Engineering and Public Policy, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA Journal AMBIO: A Journal of the Human Environment Online ISSN 1654-7209 Print ISSN 0044-7447
    Print ISSN: 0044-7447
    Electronic ISSN: 1654-7209
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer on behalf of The Royal Swedish Academy of Sciences.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-04-14
    Description:    Understanding the characteristics of historical droughts will benefit water resource managers because it will reveal the possible impacts that future changes in climate may have on drought, and subsequently, the availability of water resources. The goal of this study was to reconstruct historical drought occurrences and assess future drought risk for the drought-prone Blue River Basin in Oklahoma, under a likely changing climate using three types of drought indices, i.e., Standardized Precipitation Index (SPI), Palmer Drought Severity Index (PDSI) and Standardized Runoff Index (SRI). No similar research has been conducted in this region previously. Monthly precipitation and temperature data from the observational period 1950–1999 and over the projection period 2010–2099 from 16 statistically downscaled Global Climate Models (GCM) were used to compute the duration, severity, and extent of meteorological droughts. Additionally, soil moisture, evapotranspiration (ET), and runoff data from the well-calibrated Thornthwaite Monthly Water Balance Model were used to examine drought from a hydrological perspective. The results show that the three indices captured the historical droughts for the past 50 years and suggest that more severe droughts of wider extent are very likely to occur over the next 90 years in the Blue River Basin, especially in the later part of the 21st century. In fact, all three indices display lower minimum values than those ever recorded in the past 50 years. This study also found that SRI and SPI (PDSI) had a correlation coefficient of 0.81 (0.78) with a 2-month (no appreciable) lag time over the 1950–2099 time period across the basin. There was relatively lower correlation between SPI and PDSI over the same period. Although this study recommends that PDSI and SRI are the most suitable indices for assessing future drought risks under an increasingly warmer climate, more drought indices from ecological and socioeconomic perspectives should be investigated and compared to provide a complete picture of drought and its potential impacts on the dynamically coupled nature-human system. Content Type Journal Article Pages 1-19 DOI 10.1007/s11269-012-0044-y Authors Lu Liu, School of Civil Engineering and Environmental Science, University of Oklahoma, 202 W. Boyd St., Room 334, Norman, OK 73019-1024, USA Yang Hong, School of Civil Engineering and Environmental Science, University of Oklahoma, 202 W. Boyd St., Room 334, Norman, OK 73019-1024, USA Christopher N. Bednarczyk, Research Experiences for Undergraduates Program, National Weather Center, University of Oklahoma, Norman, OK, USA Bin Yong, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098 China Mark A. Shafer, Southern Climate Impacts Planning Program, Oklahoma Climatological Survey, University of Oklahoma, 120 David L. Boren Blvd., Suite 2900, Norman, OK 73072, USA Rachel Riley, Southern Climate Impacts Planning Program, Oklahoma Climatological Survey, University of Oklahoma, 120 David L. Boren Blvd., Suite 2900, Norman, OK 73072, USA James E. Hocker, Southern Climate Impacts Planning Program, Oklahoma Climatological Survey, University of Oklahoma, 120 David L. Boren Blvd., Suite 2900, Norman, OK 73072, USA Journal Water Resources Management Online ISSN 1573-1650 Print ISSN 0920-4741
    Print ISSN: 0920-4741
    Electronic ISSN: 1573-1650
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-09-03
    Description:    Before climate change is considered in long-term coastal management, it is necessary to investigate how institutional stakeholders in coastal management conceptualize climate change, as their awareness will ultimately affect their actions. Using questionnaires in eight Baltic Sea riparian countries, this study examines environmental managers’ awareness of climate change. Our results indicate that problems related to global warming are deemed secondary to short-term social and economic issues. Respondents agree that problems caused by global warming will become increasingly important, but pay little attention to adaptation and mitigation strategies. Current environmental problems are expected to continue to be urgent in the future. We conclude that an apparent gap exists between decision making, public concerns, and scientific consensus, resulting in a situation in which the latest evidence rarely influences commonly held opinions. Content Type Journal Article Pages 645-655 DOI 10.1007/s13280-012-0327-9 Authors Joanna Piwowarczyk, Department of Marine Ecology, Institute of Oceanology, Polish Academy of Sciences, 55 Powstancow Warszawy Street, 81-712 Sopot, Poland Anders Hansson, Centre for Climate Science and Policy Research and Water and Environmental Studies, Department of Thematic Studies, Linköping University, Norrköping, Sweden Mattias Hjerpe, Centre for Climate Science and Policy Research and Water and Environmental Studies, Department of Thematic Studies, Linköping University, Norrköping, Sweden Boris Chubarenko, Atlantic Branch of the Institute of Oceanology, Russian Academy of Sciences, Kaliningrad, Russia Konstantin Karmanov, Atlantic Branch of the Institute of Oceanology, Russian Academy of Sciences, Kaliningrad, Russia Journal AMBIO: A Journal of the Human Environment Online ISSN 1654-7209 Print ISSN 0044-7447 Journal Volume Volume 41 Journal Issue Volume 41, Number 6
    Print ISSN: 0044-7447
    Electronic ISSN: 1654-7209
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer on behalf of The Royal Swedish Academy of Sciences.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-05-12
    Description:    Under increasing water scarcity, collective groundwater management is a global concern. This article presents an interdisciplinary analysis of this challenge drawing on a survey including 50 large and small farms and gardens in a village in an agricultural land reclamation area on the edge of the Western Desert of Egypt. Findings revealed that smallholders rely on a practice of shallow groundwater use, through which drainage water from adjacent irrigation areas is effectively recycled within the surface aquifer. Expanding agroindustrial activities in the surrounding area are socio-economically important, but by mining non-renewable water in the surrounding area, they set in motion a degradation process with social and ecological consequences for all users in the multi-layered aquifer system. Based on the findings of our investigation, we identify opportunities for local authorities to more systematically connect available environmental information sources and common pool resource management precedents, to counterbalance the degradation threat. Content Type Journal Article Category Report Pages 1-14 DOI 10.1007/s13280-012-0255-8 Authors Caroline King, Oxford University Centre for the Environment, University of Oxford, South Parks Road, Oxford, UK Boshra Salem, Department of Environmental Sciences, Faculty of Science, University of Alexandria, Alexandria, Egypt Journal AMBIO: A Journal of the Human Environment Online ISSN 1654-7209 Print ISSN 0044-7447
    Print ISSN: 0044-7447
    Electronic ISSN: 1654-7209
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer on behalf of The Royal Swedish Academy of Sciences.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...